
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Isbn 978-5-06-005817-8 © фгуп «Издательство «Высшая школа», 2007
- •Раздел 1 введение в курс «материаловедение и технология конструкционных материалов»
- •Глава 1 основные сведения о строении материалов
- •1.1. Роль материалов в развитии электро- и радиотехники
- •1.2. Классификация материалов, используемых в электро- и радиотехнике
- •Кристаллографическая система Пространственная решетка (см. Рис. 1.1, б)
- •1.4. Типы связей
- •Электроотрицательность химических элементов (в единицах шкалы Полинга)
- •Дипольные моменты химических связей и груш в органических соединениях
- •Непрерывный переход неполярных, полярных и ионных молекул Возрастание поляризации
- •1.7.1. Строение макромолекул и полимерного тела
- •Атакгический
- •Надмолекулярная структура аморфных полимеров
- •Надмолекулярная структура кристаллизующихся полимеров
- •Максимальный размер, а
- •1.7.2. Три физических состояния полимеров
- •1.7.3. Влияние введения пластификаторов и твердых наполнителей на Гс и Гт полимеров
- •Раздел 2 диэлектрические материалы
- •Глава 2
- •2.1.1. Физическая сущность поляризации диэлектриков
- •2.1.2. Поле внутри диэлектрика
- •2.1.3. Диэлектрическая проницаемость
- •2.4. Зависимость диэлектрической проницаемости от различных факторов
- •2.4.1. Газообразные диэлектрики
- •2.4.2. Жидкие и твердые диэлектрики молекулярного строения неполярные
- •8 2,2 2,1 2,0 1,9 50 Т, с 63 50 1 — парафин; 2 — нефтяное электроизоляционное масло. Образующие е: 3 — аэ(7); 4 — п(т) (схематически)
- •2.4.3. Жидкие и твердые диэлектрики молекулярного строения полярные
- •2.4.4. Твердые диэлектрики ионного строения с плотной упаковкой решетки ионами
- •2.4.5. Диэлектрики ионного строения аморфные и кристаллические с неплотной упаковкой решетки ионами
- •Глава 3
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •3.1.3. Зависимость электропроводности диэлектриков, концентрации носителей зарядов и их подвижности от температуры
- •3.4. Электропроводность твердых диэлектриков
- •3.4.1. Электропроводность твердых диэлектриков молекулярного строения
- •3.4.2. Электропроводность твердых диэлектриков ионного строения
- •3.4.3. Зависимость у и j от е в широком интервале
- •3.4.4. Поверхностная электропроводность твердых диэлектриков
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Глава 4
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •Ir ru(tiCp соRCp
- •4.4. Диэлектрические потери в газообразных диэлектриках
- •4.6. Диэлектрические потери в твердых диэлектриках 4.6.1. Твердые диэлектрики ионного строения
- •4.6.2. Твердые диэлектрики молекулярного строения
- •4.6.3. Полимерные диэлектрики
- •Глава 5
- •5.1. Основные понятия и определения
- •5.2. Пробой газообразных диэлектриков
- •5.2.1. Пробой газов в однородном электрическом поле
- •Электрическая прочность некоторых диэлектриков в газообразном состоянии
- •5.2.2. Пробой газов в неоднородном электрическом поле
- •5.2.3. Пробой неоднородных диэлектриков
- •Поверхностный разряд в резконеоднородном электрическом поле
- •5.3. Пробой жидких диэлектриков
- •5.3.1. Теория теплового пробоя
- •5.3.2. Теория электрического пробоя
- •5.3.3. Пробой технически чистых жидких диэлектриков
- •5.3.4. Мероприятия по повышению пробивного напряжения жидких диэлектриков в электроустановках
- •5.4. Пробой твердых диэлектриков
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •5.4.3. Электрохимический пробой
- •Сравнительная короностойкость некоторых электроизоляционных материалов при 50 Гц
- •Старение под действием тепловых процессов, протекающих в порах изоляции, заполненных влагой
- •Старение под действием электролитических процессов
- •5.4.4. Влияние природы и строения твердых диэлектриков и внешних условий на электрическую прочность Влияние природы диэлектриков
- •Число слоев тонкослойной изоляции
- •5.4.5. Электрическая прочность полимерных диэлектриков
- •Влияние кристалличности, размера надмолекулярных образований и ориентации образцов
- •20 60 100 Afcd), мкм
- •Электрическая прочность, плотность, влагопроницаемость и относительная оптическая плотность ацетилцеллюлозы в зависимости от молекулярной массы
- •* Образцы нефракционированные. Пробой производили на фронте одиночных стандартных импульсов напряжения.
- •5.5. Профилактическое испытание изоляции повышенным напряжением
- •Глава 6
- •6.1. Механические свойства диэлектриков
- •6.2. Влажностные свойства диэлектриков
- •6.3. Тепловые свойства диэлектриков
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •7.1. Жидкие диэлектрики
- •7.1.1. Нефтяные электроизоляционные масла
- •Предельно допустимые значения показателей качества трансформаторного масла, подготовленного и залитого в электрооборудование
- •7.1.2. Синтетические жидкие диэлектрики
- •7.1.3. Растительные масла
- •7.2.Термопласты
- •Свойства синтетических полимеров (смол)
- •7.3. Реактопласты
- •7.4. Пластические массы
- •Пресс-материалы с порошкообразным наполнителем (пресс-порошки)
- •7.5. Резины
- •7.6. Природные смолы, целлюлоза и ее эфиры
- •7.7. Воскообразные диэлектрики
- •7.8. Волокнистые материалы
- •7.9. Электроизоляционные лаки, эмали и компаунды
- •7.10. Неорганические стекла
- •7.11. Керамические диэлектрики
- •7.12. Слюда и материалы на ее основе
- •Электрические свойства слюды
- •7.13. Асбест и материалы на его основе
- •7.14. Минеральные диэлектрики
- •7.15. Активные диэлектрики
- •7.15.1. Сегнетоэлектрики
- •Свойства сегнетокерамики для варикондов
- •0,6 0,8 Мв/м Рис. 7.8. Зависимость е от напряженности электрического поля е материалов для варикондов (для сравнения приводится зависимость е от е для BaTi03)
- •Некоторые характеристики варикондов из материалов bk-1, bk-2 и bk-4
- •Цвет свечения люминофора в зависимости от природы активатора
- •Электретные материалы
- •Раздел 3 полупроводниковые материалы
- •Глава 8
- •8.1.Общие сведения и классификация полупроводниковых материалов
- •Удельное электрическое сопротивление электротехнических материалов различных классов при 20 °с и постоянном напряжении
- •Простые полупроводники
- •Примесные уровни в германии и кремнии (определены термическим методом)
- •8.2.4. Определение типа электропроводности полупроводников
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Некоторые характеристики термисторов
- •Некоторые характеристики позисторов
- •Характеристики варикапов
- •8.7. Пробой р-п-перехода
- •Глава 9
- •9.1. Технологии очистки и получения монокристаллических слитков и эпитаксиальных слоев
- •9.3. Полупроводниковые химические соединения и многофазные материалы
- •9.3.3. Химические соединения типа ahbvi и другие полупроводниковые материалы
- •Раздел 4
- •Глава 10
- •10.1. Классификация металлов
- •10.2. Строение и свойства металлов 10.2.1. Механические свойства металлов
- •10.2.3. Влияние дефектов строения металлов на их механическую прочность
- •10.3.2. Сплавы, образующие твердые растворы
- •10.4.2. Компоненты и фазы в сплавах системы «железо—углерод»
- •10.4.3. Диаграмма состояния сплавов системы «железо—углерод»
- •10.5. Понятие о термической обработке сталей 10.5.1. Сущность и назначение термической обработки
- •10.5.2. Фазовые превращения в сталях при термической обработке
- •Изменение структуры и твердости углеродистой стали эвтектоидного состава в зависимости от скорости охлаждения
- •10.5.3. Виды термической обработки сталей
- •10.6. Строение и свойства сталей
- •10.6.1. Влияние углерода и постоянной примеси на свойства сталей
- •10.6.2. Общие сведения, классификация и маркировка углеродистых сталей
- •10.6.3. Общие сведения, классификация и маркировка легированных сталей
- •Глава 11
- •11.1.2. Дуговая сварка
- •11.1.3. Контактная сварка
- •11.1.4. Газовая сварка и огневая резка
- •11.1.5. Пайка. Припои и флюсы
- •11.2.1. Общие сведения
- •11.2.2. Основные виды литья
- •11.3.1. Общие сведения
- •11.3.2. Основные виды обработки металлов давлением
- •1. Сортовой прокат в свою очередь делят на две подгруппы.
- •11.4.1. Общие сведения
- •11.4.2. Основные виды обработки металла резанием
- •Раздел 5 проводниковые материалы
- •Глава 12
- •12.1. Общие сведения и классификация
- •12.3. Физические процессы в металлических проводниках
- •12.3.1. Зависимость удельного электрического сопротивления металлических проводников от их строения и внешних факторов
- •Влияние частоты напряжения на сопротивление металлических проводников
- •12.3.2. Эмиссионные и контактные явления в металлах
- •12.3.3. Тепловые свойства металлов Тепловое расширение
- •Теплопроводность
- •12.4. Механические свойства металлических проводников
- •Глава 13
- •13.1. Проводниковые материалы высокой проводимости
- •13.1.1. Медь и ее сплавы
- •13.1.2. Алюминий и его сплавы
- •13.1.3. Биметаллические проводники
- •13.4. Материалы высокого сопротивления
- •13.4.1. Металлические сплавы, образующие твердые растворы
- •13.4.2. Пленочные резистивные материалы
- •13.4.3. Сплавы для термопар
- •13.5.1. Тугоплавкие металлы
- •13.5.2. Металлы со средним значением температуры
- •13.5.3. Легкоплавкие металлы
- •13.5.4. Благородные металлы
- •13.6.1. Материалы для скользящих контактов
- •13.6.2. Материалы для разрывных контактов
- •Раздел 6 магнитные материалы
- •Глава 14
- •14.1. Основные сведения о магнитных свойствах и классификация магнитных материалов
- •14.1.1. Диамагнетики
- •14.1.2. Парамагнетики
- •14.1.3. Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •14.2. Магнитные свойства ферромагнетиков 14.2.1. Природа ферромагнетизма
- •14.2.2. Магнитная анизотропия
- •14.2.3. Магнитострикция
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •14.2.6. Магнитная проницаемость
- •10 10 Частота, Гц
- •14.2.7. Магнитные потери
- •Глава 15
- •15.1.1. Низкочастотные магнитомягкие материалы
- •15.1.2. Высокочастотные магнитные материалы
- •15.3. Магнитные материалы специализированного назначения
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
2.1.2. Поле внутри диэлектрика
Поместим в однородное электрическое поле напряженностью Е0 любой диэлектрик. Поле Е0 создается свободными зарядами, которые размещаются на поверхности металлических электродов; фактически это поле в вакууме, и модуль его напряженности равен
Е0 = о0/е0, (2.7)
где о0 — поверхностная плотность свободных зарядов на металлических электродах.
Эти свободные заряды не являются составной частью металлических электродов и диэлектрика и в отличие от их собственных зарядов вносятся в них источником электрического тока, поэтому их часто называют сторонними зарядами (рис. 2.1, а). Величина сторонних зарядов на электродах равна +0О и ~Qo Кл, а их плотность соответственно +о0 и — о0 Кл/м2 (о0 = Qo/5, где S — площадь поверхности электрода, м2).
Под действием внешнего поля напряженностью Е0 диэлектрик поляризуется: внутри его и на поверхности возникают связанные заряды. Если положительные и отрицательные связанные заряды внутри однородного диэлектрика взаимно компенсируют друг друга, то на поверхностях, обращенных к электродам, образуются соответственно положительные и отрицательные поверхностные связанные заряды (+Q и -Q, Кл) определенной плотности +а и —а, Кл/м2. Знак поверхностных связанных зарядов противоположен полярности электрода. Под действием поверхностных связанных зарядов в диэлектрике возникает электрическое поле напряженности Есз, направленное противоположно внешнему электрическому полю напряженностью Е0 (рис. 2.1, б). Поле Есз является фактически деполяризующим полем внутри диэлектрика.
Результирующее поле Е образуется в диэлектрике вследствие суперпозиции внешнего поля Е0 и поля, образованного поверхностными связанными зарядами Есз:
Е=Е0+(-Есз), (2.8)
где Е — напряженность среднего макроскопического поля, возникающего в поляризованном диэлектрике.
©
© Сторонние заряды, компенсирующие
связанные заряды
-с?„(+а„>
т^ж^м
^ш!
+0к(+стк)
тжвжтмлй
<2д(-<Тд)
-е?о(-°о>Ц Q
]
(d Щ
-Q^AJWnWW'G'Hl
+ - Связанные заряды ГП Г—1 Сторонние заряды
Рис. 2.1. Схема размещения зарядов (20(о0), (2д(од), (2к(ок) на электродах плоских конденсаторов с вакуумом (а) и диэлектриком (б) после подключения источника электрического тока и образования среднего микроскопического поля Е в диэлектрике
пряжении, приложенным к электродам. Поскольку вне диэлектрика Есз = 0, то согласно формуле (2.8) имеем
Е=Е0. (2.9)
Поэтому в последующих главах вместо Е0 употреблено Е.
Поле Есз обусловлено плотностью поверхностных связанных зарядов а, и модуль его напряженности равен
Есз = о/е0 •
Так как Р = о, то можно записать, что
Есз=Р/е0. (2.10)
Подставив в формулу (2.10) значение Р из (2.6), получим
Есз =(е- 1)Е. (2.11)
Определим величину напряженности среднего макроскопического поля Е в поляризованном диэлектрике, подставив значение Есз из формулы (2.11) в (2.8):
Е = Е0 — (е — 1)Е,
откуда
Е = Е0/е. (2.12)
Следовательно, напряженность среднего макроскопического поля Е, образованного в поляризованном диэлектрике, в е раз слабее напряженности внешнего поля Е0, т. е. в е раз меньше, чем поле тех же зарядов в вакууме.
Умножив формулу (2.12) на 808, получим электрическое смещение (индукцию) D внутри диэлектрика
D = 80eE0/8=80E0 = D0. (2.13)
Таким образом, электрическое смещение D внутри диэлектрика совпадает с электрическим смещением D0 внешнего поля и, что то же самое, с вектором напряженности внешнего поля Е0, ухмноженным на электрическую постоянную е0.
При более строгом рассмотрении зависимости Е от Е0, согласно формуле (2.12), можно убедиться, что эта зависимость относится к частному случаю, когда изотропный диэлектрик однородно поляризован и имеет форму диска, расположенного перпендикулярно полю Е0.
В случае, когда диэлектрик имеет вид длинного стержня, расположенного параллельно полю Е0, а связанные заряды, находящиеся на его концах, удалены друг от друга на значительные расстояния, деполяризующее поле практически не образуется (Есз ~ 0). Поэтому
Е = Е0. (2.14)
Для диэлектрика сферической формы деполяризующее поле Есз = -P/(3£q). Следовательно, напряженность среднего макроскопического поля Е, образующегося в диэлектрике, равна
Е = Е0-Р/Зв, (2.15)
Таким образом, на зависимость напряженности среднего макроскопического поля в поляризованном диэлектрике Е от напряженности внешнего поля Е0 влияет форма самого диэлектрика.