
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Isbn 978-5-06-005817-8 © фгуп «Издательство «Высшая школа», 2007
- •Раздел 1 введение в курс «материаловедение и технология конструкционных материалов»
- •Глава 1 основные сведения о строении материалов
- •1.1. Роль материалов в развитии электро- и радиотехники
- •1.2. Классификация материалов, используемых в электро- и радиотехнике
- •Кристаллографическая система Пространственная решетка (см. Рис. 1.1, б)
- •1.4. Типы связей
- •Электроотрицательность химических элементов (в единицах шкалы Полинга)
- •Дипольные моменты химических связей и груш в органических соединениях
- •Непрерывный переход неполярных, полярных и ионных молекул Возрастание поляризации
- •1.7.1. Строение макромолекул и полимерного тела
- •Атакгический
- •Надмолекулярная структура аморфных полимеров
- •Надмолекулярная структура кристаллизующихся полимеров
- •Максимальный размер, а
- •1.7.2. Три физических состояния полимеров
- •1.7.3. Влияние введения пластификаторов и твердых наполнителей на Гс и Гт полимеров
- •Раздел 2 диэлектрические материалы
- •Глава 2
- •2.1.1. Физическая сущность поляризации диэлектриков
- •2.1.2. Поле внутри диэлектрика
- •2.1.3. Диэлектрическая проницаемость
- •2.4. Зависимость диэлектрической проницаемости от различных факторов
- •2.4.1. Газообразные диэлектрики
- •2.4.2. Жидкие и твердые диэлектрики молекулярного строения неполярные
- •8 2,2 2,1 2,0 1,9 50 Т, с 63 50 1 — парафин; 2 — нефтяное электроизоляционное масло. Образующие е: 3 — аэ(7); 4 — п(т) (схематически)
- •2.4.3. Жидкие и твердые диэлектрики молекулярного строения полярные
- •2.4.4. Твердые диэлектрики ионного строения с плотной упаковкой решетки ионами
- •2.4.5. Диэлектрики ионного строения аморфные и кристаллические с неплотной упаковкой решетки ионами
- •Глава 3
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •3.1.3. Зависимость электропроводности диэлектриков, концентрации носителей зарядов и их подвижности от температуры
- •3.4. Электропроводность твердых диэлектриков
- •3.4.1. Электропроводность твердых диэлектриков молекулярного строения
- •3.4.2. Электропроводность твердых диэлектриков ионного строения
- •3.4.3. Зависимость у и j от е в широком интервале
- •3.4.4. Поверхностная электропроводность твердых диэлектриков
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Глава 4
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •Ir ru(tiCp соRCp
- •4.4. Диэлектрические потери в газообразных диэлектриках
- •4.6. Диэлектрические потери в твердых диэлектриках 4.6.1. Твердые диэлектрики ионного строения
- •4.6.2. Твердые диэлектрики молекулярного строения
- •4.6.3. Полимерные диэлектрики
- •Глава 5
- •5.1. Основные понятия и определения
- •5.2. Пробой газообразных диэлектриков
- •5.2.1. Пробой газов в однородном электрическом поле
- •Электрическая прочность некоторых диэлектриков в газообразном состоянии
- •5.2.2. Пробой газов в неоднородном электрическом поле
- •5.2.3. Пробой неоднородных диэлектриков
- •Поверхностный разряд в резконеоднородном электрическом поле
- •5.3. Пробой жидких диэлектриков
- •5.3.1. Теория теплового пробоя
- •5.3.2. Теория электрического пробоя
- •5.3.3. Пробой технически чистых жидких диэлектриков
- •5.3.4. Мероприятия по повышению пробивного напряжения жидких диэлектриков в электроустановках
- •5.4. Пробой твердых диэлектриков
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •5.4.3. Электрохимический пробой
- •Сравнительная короностойкость некоторых электроизоляционных материалов при 50 Гц
- •Старение под действием тепловых процессов, протекающих в порах изоляции, заполненных влагой
- •Старение под действием электролитических процессов
- •5.4.4. Влияние природы и строения твердых диэлектриков и внешних условий на электрическую прочность Влияние природы диэлектриков
- •Число слоев тонкослойной изоляции
- •5.4.5. Электрическая прочность полимерных диэлектриков
- •Влияние кристалличности, размера надмолекулярных образований и ориентации образцов
- •20 60 100 Afcd), мкм
- •Электрическая прочность, плотность, влагопроницаемость и относительная оптическая плотность ацетилцеллюлозы в зависимости от молекулярной массы
- •* Образцы нефракционированные. Пробой производили на фронте одиночных стандартных импульсов напряжения.
- •5.5. Профилактическое испытание изоляции повышенным напряжением
- •Глава 6
- •6.1. Механические свойства диэлектриков
- •6.2. Влажностные свойства диэлектриков
- •6.3. Тепловые свойства диэлектриков
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •7.1. Жидкие диэлектрики
- •7.1.1. Нефтяные электроизоляционные масла
- •Предельно допустимые значения показателей качества трансформаторного масла, подготовленного и залитого в электрооборудование
- •7.1.2. Синтетические жидкие диэлектрики
- •7.1.3. Растительные масла
- •7.2.Термопласты
- •Свойства синтетических полимеров (смол)
- •7.3. Реактопласты
- •7.4. Пластические массы
- •Пресс-материалы с порошкообразным наполнителем (пресс-порошки)
- •7.5. Резины
- •7.6. Природные смолы, целлюлоза и ее эфиры
- •7.7. Воскообразные диэлектрики
- •7.8. Волокнистые материалы
- •7.9. Электроизоляционные лаки, эмали и компаунды
- •7.10. Неорганические стекла
- •7.11. Керамические диэлектрики
- •7.12. Слюда и материалы на ее основе
- •Электрические свойства слюды
- •7.13. Асбест и материалы на его основе
- •7.14. Минеральные диэлектрики
- •7.15. Активные диэлектрики
- •7.15.1. Сегнетоэлектрики
- •Свойства сегнетокерамики для варикондов
- •0,6 0,8 Мв/м Рис. 7.8. Зависимость е от напряженности электрического поля е материалов для варикондов (для сравнения приводится зависимость е от е для BaTi03)
- •Некоторые характеристики варикондов из материалов bk-1, bk-2 и bk-4
- •Цвет свечения люминофора в зависимости от природы активатора
- •Электретные материалы
- •Раздел 3 полупроводниковые материалы
- •Глава 8
- •8.1.Общие сведения и классификация полупроводниковых материалов
- •Удельное электрическое сопротивление электротехнических материалов различных классов при 20 °с и постоянном напряжении
- •Простые полупроводники
- •Примесные уровни в германии и кремнии (определены термическим методом)
- •8.2.4. Определение типа электропроводности полупроводников
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
- •Некоторые характеристики термисторов
- •Некоторые характеристики позисторов
- •Характеристики варикапов
- •8.7. Пробой р-п-перехода
- •Глава 9
- •9.1. Технологии очистки и получения монокристаллических слитков и эпитаксиальных слоев
- •9.3. Полупроводниковые химические соединения и многофазные материалы
- •9.3.3. Химические соединения типа ahbvi и другие полупроводниковые материалы
- •Раздел 4
- •Глава 10
- •10.1. Классификация металлов
- •10.2. Строение и свойства металлов 10.2.1. Механические свойства металлов
- •10.2.3. Влияние дефектов строения металлов на их механическую прочность
- •10.3.2. Сплавы, образующие твердые растворы
- •10.4.2. Компоненты и фазы в сплавах системы «железо—углерод»
- •10.4.3. Диаграмма состояния сплавов системы «железо—углерод»
- •10.5. Понятие о термической обработке сталей 10.5.1. Сущность и назначение термической обработки
- •10.5.2. Фазовые превращения в сталях при термической обработке
- •Изменение структуры и твердости углеродистой стали эвтектоидного состава в зависимости от скорости охлаждения
- •10.5.3. Виды термической обработки сталей
- •10.6. Строение и свойства сталей
- •10.6.1. Влияние углерода и постоянной примеси на свойства сталей
- •10.6.2. Общие сведения, классификация и маркировка углеродистых сталей
- •10.6.3. Общие сведения, классификация и маркировка легированных сталей
- •Глава 11
- •11.1.2. Дуговая сварка
- •11.1.3. Контактная сварка
- •11.1.4. Газовая сварка и огневая резка
- •11.1.5. Пайка. Припои и флюсы
- •11.2.1. Общие сведения
- •11.2.2. Основные виды литья
- •11.3.1. Общие сведения
- •11.3.2. Основные виды обработки металлов давлением
- •1. Сортовой прокат в свою очередь делят на две подгруппы.
- •11.4.1. Общие сведения
- •11.4.2. Основные виды обработки металла резанием
- •Раздел 5 проводниковые материалы
- •Глава 12
- •12.1. Общие сведения и классификация
- •12.3. Физические процессы в металлических проводниках
- •12.3.1. Зависимость удельного электрического сопротивления металлических проводников от их строения и внешних факторов
- •Влияние частоты напряжения на сопротивление металлических проводников
- •12.3.2. Эмиссионные и контактные явления в металлах
- •12.3.3. Тепловые свойства металлов Тепловое расширение
- •Теплопроводность
- •12.4. Механические свойства металлических проводников
- •Глава 13
- •13.1. Проводниковые материалы высокой проводимости
- •13.1.1. Медь и ее сплавы
- •13.1.2. Алюминий и его сплавы
- •13.1.3. Биметаллические проводники
- •13.4. Материалы высокого сопротивления
- •13.4.1. Металлические сплавы, образующие твердые растворы
- •13.4.2. Пленочные резистивные материалы
- •13.4.3. Сплавы для термопар
- •13.5.1. Тугоплавкие металлы
- •13.5.2. Металлы со средним значением температуры
- •13.5.3. Легкоплавкие металлы
- •13.5.4. Благородные металлы
- •13.6.1. Материалы для скользящих контактов
- •13.6.2. Материалы для разрывных контактов
- •Раздел 6 магнитные материалы
- •Глава 14
- •14.1. Основные сведения о магнитных свойствах и классификация магнитных материалов
- •14.1.1. Диамагнетики
- •14.1.2. Парамагнетики
- •14.1.3. Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •14.2. Магнитные свойства ферромагнетиков 14.2.1. Природа ферромагнетизма
- •14.2.2. Магнитная анизотропия
- •14.2.3. Магнитострикция
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •14.2.6. Магнитная проницаемость
- •10 10 Частота, Гц
- •14.2.7. Магнитные потери
- •Глава 15
- •15.1.1. Низкочастотные магнитомягкие материалы
- •15.1.2. Высокочастотные магнитные материалы
- •15.3. Магнитные материалы специализированного назначения
- •Глава 6 285
- •Раздел 4 485
- •Раздел 5 проводниковые материалы 601
- •Раздел 6 магнитные материалы 474
Надмолекулярная структура аморфных полимеров
В полимерах, находящихся в аморфном состоянии, имеет место только ближний порядок, распространяющийся на области, образованные складчатой конформацией молекулярных цепей (кон- формация — одна из возможных форм макромолекулы, которая приобретается ею под действием теплового движения или внешнего поля без разрыва химических связей). Эти области называют доменами. Домены имеют четкие границы. Они обособлены и дезориентированы друг относительно друга (рис. 1.12, а). Размер до-
Рис.
1.12. Модель
строения аморфного полимера
(а) и его домена
(б):
а
— D
—
домен;
MD
—
междоменная область;
б —
1 — домен; 2
— истинно
неупорядоченные области
менов соизмерим с размером макромолекулы и равен примерно 30—100 А. В аморфных полимерах объемная доля доменов составляет около 50 %. Домен образован за счет складывания отдельных частей молекулярной цепи (в том числе соседних макромолекул) как бы параллельно друг другу (см. рис. 1.12, 6,1). Однако отрезки молекулярных цепей в доменах не имеют прямолинейной (вытянутой) формы и не расположены друг относительно друга строго на определенном расстоянии. Поэтому, хотя в доменах наблюдается некоторая упорядоченность в расположении отрезков макромолекул, они не обладают кристаллографическим порядком. Домены являются переходным типом структуры от аморфной к кристаллической. Истинно неупорядоченными участками аморфных полимеров являются области, расположенные между доменами. Они образованы свободными концами и длинными петлями молекулярных цепей и частями «проходных» макромолекул. Эти области называют междоменными (см. рис. 1.12, а). Они содержат пустоты, имеют наименьшую плотность молекулярной упаковки, наибольшую концентрацию примесей и других дефектов. Домены — это простейшие надмолекулярные структурные образования аморфных полимеров, из которых могут формироваться более крупные надмолекулярные («наддоменные») структуры, например глобулы. Подобно бусинам в ожерелье, домены связаны между собой проходными молекулярными цепями. Домены могут играть роль зародышей кристаллизации, непосредственно образуя моно- слойные кристаллические пластины (см. ниже).
Из сказанного следует, что аморфные полимеры не являются веществами, образованными из перепутанных молекулярных цепей, подобно нитям в войлоке, а представляют собой молекулярные системы с относительно упорядоченными областями. Кристаллизацию же полимера можно рассматривать как переход структуры от менее упорядоченной к высокоупорядоченной.
Надмолекулярная структура кристаллизующихся полимеров
В кристаллизующихся полимерах образуются области как ближнего, так и дальнего порядка, которые в отличие от доменов обладают значительно более высокой упорядоченностью в расположении молекулярных цепей, имеющих складчатую конформацию. Для данной складчатой конформации молекулярных цепей характерно проявление регулярно повторяющихся изгибов (складок) из выпрямленных отрезков цепей, расположенных на одинаковом расстоянии и параллельно друг другу (рис. 1.13), т. е. имеет место кристаллографический порядок. В результате образуется простейший (первичный) элемент надмолекулярной структуры кристаллизующихся полимеров — кристаллографическая (элементарная) ячейка. Ширина элементарных ячеек мала — от единиц до нескольких десятков ангстрем, поэтому каждая макромолекула может «проходить» через несколько элементарных ячеек. В образовании элементарной ячейки обычно принимают участие несколько макромолекул. Длина отрезка (складки) молекулярной цепи состоит из нескольких десятков сегментов (у полиэтилена примерно 20 сегментов). Для элементарных ячеек полимеров типичной является орторомбическая форма. Однако, поскольку полимеры, так же как и простые вещества, обладают полиморфизмом, элементарные ячейки могут иметь и другие формы. Например, полипропилен может образовывать моноклинную, гексагональную или триклинную форму симметрии.
<<
-шжз*:2
Рис.
1.13. Схематическое
двумерное изображение кристаллита
полиэтилена:
1
— пластинчатый монокристалл;
2 — аморфная область
33
2-Колесов
реход пластинчатого монокристалла в аморфные области происходит не скачкообразно, а постепенно, через ряд промежуточных форм различной степени упорядоченности. Поэтому свойства аморфных областей в кристаллизующихся полимерах заметно отличаются от свойств полимеров, целиком находящихся в аморфном состоянии.
Из рис. 1.13 видно, что пластинчатый монокристалл полиэтилена имеет толщину - 225 А, а расположенные сверху и снизу аморфные области — по ~ 55 А. Четкой границы между пластинчатыми монокристаллами и аморфными областями не существует, так как в их образовании обычно принимают участие одни и те же молекулярные цепи. Увеличение степени кристалличности полиэтилена (например, при отжиге) сопровождается увеличением толщины пластинчатого монокристалла и уменьшением толщины аморфных областей.
Рис.
1.14. Сферолитная
структура полимеров:
а
— единичный сферолит; б — реальная
форма сферолитов.
Микрофотографии
в поляризованном свете, образцов
полиэтилена высокой плотности с ММ:
в - 3 • 103;
г - 62 • 103;
д - 372- 103
(см. табл. 1.4)
ном свете в виде темного мальтийского креста. Сферолиты, так же как пластинчатые монокристаллиты и образуемые ими промежуточные структуры, связаны между собой большим числом межструктурных связей в виде проходных макромолекулярных цепей, их пучков и других образований из выпрямленных цепей (рис. 1.15).
Ниже приведены некоторые основные структурные элементы кристаллизующихся полимеров и их размеры
Структурный элемент:
Молекула
Кристаллографическая ячейка
Кристаллит
Монокристалл
Сферолит
В межсферолитном пространстве и между пластинчатыми монокристаллитами и образуемыми ими промежуточными структурами, кроме проходных макромолекул, находятся длинные и короткие петли, образованные молекулярными цепями, свободные концы макромолекул, примеси и различные дефекты (см. рис. 1.15). Длинные петли и свободные концы являются дефектами строения. Концентрация и подвижность проходных макромолекул, длинных петель и свободных концов существенно влияют на физико-химические, в том числе электрические, характеристики. Межсферолитное пространство в сравнении с другими микрообъемами полимерного тела имеет наименьшую плотность молекулярной упаковки и наибольшее число примесей, пор и других дефектов. Поэтому оно, главным образом, и влияет на величину электрических, механических и других физико- химических характеристик полимерного диэлектрика. С увеличением размера сферолитов молекулярная плотность межсферолитного пространства снижается, а дефектность строения возрастает; свойства полимера в целом ухудшаются. Из электрических характеристик в первую очередь снижаются электрическая прочность Епр и удельное объемное электрическое сопротивление р (табл. 1.4 и 1.5). Размер сферолитов зависит от ММ и ММР полимера (см. рис. 1.14 и табл. 1.4); их размеры можно также изменять путем термической обработки (закалки, отжига), введения активных твердых наполнителей и пластификаторов (см. табл. 1.5).