
- •3. Задача.
- •3. Задача.
- •1. Определение и свойства равнобедренного треугольника. Доказательство теоремы о свойстве медианы равнобедренно го треугольника, проведенной к его основанию.
- •2. Теорема Менелая.
- •1. Определение равных треугольников. Сформулировать признаки равенства треугольников и доказать один из них.
- •2. Деление отрезка на n равных частей. Доказательство теоремы Фалеса.
- •1. Дополнительное построение: Через точку в2 проведем прямую fe II oa, такую, что
- •2. Полученные четырехугольники fa1a2b2 и еa3a2b2 являются параллелограммами по определению (противоположные стороны попарно параллельны). По свойству параллелограмма:
- •3. Рассмотрим ∆ fb1b2 и ∆в2b3е.
- •2. Разобьем отрезок oa2 на m равных частей длины х. При этом точка a1 будет одной из точек деления.
- •3. Проведем через точки деления прямые, параллельные прямой a1b1. Их получится столько, сколько точек деления на отрезке oa1.
- •5. Тогда
- •1. Пропорциональные отрезки в круге (доказать теоремы о пересекающихся хордах, пересекающихся секущих, секущей и касательной, проведенных из одной точки к окружности.
- •2. Вывод формулы для вычисления суммы внутренних углов выпуклого многоугольника.
- •1. Определение параллельных прямых. Свойства параллельных прямых. Доказательство признаков параллельности прямых.
- •1. Определение вписанного угла. Доказательство теоремы о градусной мере вписанного угла.
- •1). Одна из сторон вписанного угла проходит через центр окружности.
- •2). Центр окружности лежит внутри вписанного угла.
- •3). Центр окружности лежит вне вписанного угла. Вне угла еас проведем луч ат через центр окружности. Согласно аксиоме измерения углов
- •2. Вывод формул площади треугольника:
- •1) Пусть авс – остроугольный, тогда bn ac лежит внутри треугольника.
- •2) Пусть авс – тупоугольный с тупым углом с и bn ac лежит внутри треугольника.
- •1. Определение внешнего угла треугольника. Доказательство теоремы о свойстве внешнего угла треугольника.
- •2. Нахождение значений синуса, косинуса, тангенса, котангенса углов в 30, 45, 60.
- •1. Геометрическое место точек. Теоремы о геометрическом месте точек, равноудаленных от концов отрезка; равноудаленных от сторон угла.
- •2. Определение круга. Формула для вычисления площади круга (без вывода). Вывод формулы площади кругового сектора и кругового сегмента.
- •2. Определение тригонометрических функций острого угла прямоугольного треугольника, основные тригонометрические тождества с выводом.
- •3). Доказательство:
- •2. Определение окружности. Формула для вычисления длины окружности (без вывода). Вывод формулы длины дуги окружности. Теоремы о дугах и хордах.
- •1. Соединим точки в и е с центром окружности.
- •2. Рассмотрим треугольники сов и eof.
- •2. Рассмотрим треугольники aов и eod.
- •1. Определение параллелограмма и его свойства (с доказательством).
- •1). Циркулем из вершины угла а проводим дугу произвольного радиуса до пересечения со сторонами угла в точках в и с.
- •2). Из точек в и с проводим дуги одинакового радиуса до пересечения в точке d.
- •3). Из точки a через точку d проводим луч ad.
- •1. Признаки параллелограмма (с доказательством). Построение параллелограмма по двум сторонам и диагонали.
- •2. Определение вневписанной окружности. Теорема о центре вневписанной окружности.
- •2. Точка о пересечения внешних биссектрис равноудалена от прямых, содержащих стороны ab и bc. Поэтому через нее проходит биссектриса внутреннего угла a.
- •1. Определение прямоугольника. Доказательство свойств и признаков прямоугольника.
- •2. Теорема Птолемея.
- •2. Рассмотрим треугольники вка и сda.
- •3. Рассмотрим треугольники akd и abc.
- •1. Определение ромба. Доказательство свойств и признаков ромба. Вывод формулы площади ромба
- •2. Выражение радиуса окружности, вписанной в прямоугольный треугольник, через его стороны (вывод формулы).
- •1. Построение отрезков
- •2. Определение вписанного четырехугольника. Доказательство теоремы о свойстве углов вписанного четырехугольника.
- •1) Точка c находится вне окружности,
- •2) Она лежит внутри окружности.
- •1. Определение средней линии треугольника и трапеции. Доказательство теорем о средней линии треугольника и трапеции.
- •Рассмотрим mbn и npc.
- •2. Построение окружности, вписанной в треугольник и описанной около него.
- •1. Определение подобных треугольников. Сформулировать лемму об отношении площадей подобных треугольников. Доказательство первого признака подобия треугольников.
- •2. Критерий пересекаемости трех чевиан треугольника в одной точке (прямая и обратная теоремы Чевы).
- •1. Вывод формулы Герона.
- •1) Зная стороны треугольника, найти его высоты;
- •2) Выразить площадь треугольника через его стороны.
- •2. Свойство чевианы о разбиении площади треугольника на части. Теоремы о «ласточкином хвосте».
- •1. Вывод формул площади параллелограмма:
- •2. Доказательство теоремы об отношении отрезков медиан, на которые они делятся центром тяжести.
- •1. Теорема Пифагора и обратная ей. Пифагоровы тройки чисел, египетский треугольник.
- •2. Все треугольники т1, т2, т3, т4 равны треугольнику т по двум катетам. Следовательно, их гипотенузы равны гипотенузе треугольника т, т. Е. Отрезку с.
- •4. Четырехугольник р – равносторонний, все его углы прямые квадрат.
- •4). Докажем равенство сторон ав и а1в1.
- •5). Докажем равенство треугольников авс и а1в1с1.
- •6). Таким образом, треугольник авс – прямоугольный с прямым углом с.
- •1. Определение трапеции. Вывод формулы площади трапеции. Построение трапеции по ее основаниям и боковым сторонам.
- •2. Доказательство теорем об углах, образованных пересекающимися хордами; об углах, образованных секущими, проведенными к окружности из одной точки.
- •1. Теорема синусов.
- •1). Проведем из точки в перпендикуляр к стороне ас.
- •2. Построение прямой, параллельной данной; прямой, перпендикулярной данной.
- •1. Теорема косинусов.
- •2. Построение вневписанной окружности. Соотношения между радиусами вписанной, описанной и вневписанной окружностей.
- •1. Теорема об отношении площадей треугольников, имеющих по одному равному углу. Вывод формул площадей треугольников через радиусы вписанной и описанной окружностей.
- •2. ∆ А1в1с2 и ∆ а1в1с1 имеют общую высоту в1н, следовательно
- •3. ∆ А1в2с2 и ∆ а1в1с2 имеют общую высоту с2к, следовательно
- •4. Найдем отношение площадей ∆ а1в1с1 и ∆ а2в2с2
- •2. Описанный четырехугольник. Свойство сторон описанного четырехугольника. Формула площади вписанного четырехугольника Частный случай формулы (диагонали взаимно перпендикулярны).
- •1) Cd не пересекает окружность,
- •2) Cd пересекает окружность.
- •1. Определение подобных многоугольников. Построение многоугольника, подобного данному. Теоремы об отношении периметров и площадей подобных многоугольников.
- •1). Подобные многоугольники можно разложить на одинаковое число подобных и одинаково расположенных треугольников.
- •2. Неравенство треугольника.
- •1. Дополнительное построение:
- •2. Рассмотрим вcd:
- •1. Определение смежных и вертикальных углов. Доказательство теорем о свойстве смежных и вертикальных углов.
- •2. Свойства равнобедренной трапеции.
- •1. Взаимное расположение прямой и окружности. Характерное свойство касательной. Признак касательной. Доказать.
- •2. Пропорциональные отрезки в трапеции.
2. Деление отрезка на n равных частей. Доказательство теоремы Фалеса.
Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные между собой отрезки и на другой его стороне.
Д
ано:
AOB;
A1B1 II A2B2 II A3B3;
A1A2 = A2A3.
Доказать: В1В2 = В2В3.
Доказательство:
1. Дополнительное построение: Через точку в2 проведем прямую fe II oa, такую, что
2. Полученные четырехугольники fa1a2b2 и еa3a2b2 являются параллелограммами по определению (противоположные стороны попарно параллельны). По свойству параллелограмма:
3. Рассмотрим ∆ fb1b2 и ∆в2b3е.
4. Из ∆ FB1B2 = ∆В2B3Е B1B2 = В2B3.
Замечание: В условии теоремы Фалеса вместо сторон угла можно взять любые две прямые, при этом заключение теоремы будет то же.
Обобщенная теорема Фалеса. Параллельные прямые, пересекающие две данные прямые и отсекающие на одной прямой равные отрезки, отсекают равные между собой отрезки и на другой прямой.
Д
ано:
AOB;
A1B1
II
A2B2;
A1B1∩AO={A1}; A1B1∩BO={B1};
A2B2∩AO={A2}; A2B2∩BO={B2}.
Доказать: OA1:OA2 = OВ1:OB2.
Доказательство:
1. Пусть существует отрезок длины х, который укладывается целое число раз на отрезке OA1 и на отрезке OA2. Тогда OA1= nx,
ОA2 = mx.
2. Разобьем отрезок oa2 на m равных частей длины х. При этом точка a1 будет одной из точек деления.
3. Проведем через точки деления прямые, параллельные прямой a1b1. Их получится столько, сколько точек деления на отрезке oa1.
4. По теореме Фалеса эти прямые разбивают отрезок OB2 на равные отрезки некоторой длины у. Имеем на отрезке OB2 m равных отрезков длины у (OB2 = mу), точка B1 является точкой деления отрезка OB2 на равные части, на отрезке OB1 укладывается n равных отрезков длины у (OB1 = ny).
5. Тогда
Теорема доказана.
Обратная теорема Фалеса. Если на одной стороне угла от его вершины отложены равные отрезки ОА1, A1А2, A2А3, ... и на другой его стороне также отложены соответственно равные отрезки ОВ1, В1B2, B2В3, то прямые A1В1, А2B2, ... параллельны.
Дано: AOB; B1B2 =В2B3=…; A1A2 = A2A3=…. Доказать: А1В1 II A2В2….
Доказательство:
1. OA1B1~ OA2B2 (по пропорциональным сторонам и углу между ними).
O-общий.
OA2
= OA1
+
A1A2
= 2OA1;
OB2
= OB1
+
B1B2
= 2OB1.
2. Из подобия треугольников следует: OA1B1 = OA2B2 – соответственные A1B1 II A2B2.
3. Аналогично доказывается параллельность других прямых.
Задача на построение. Деление отрезка на n равных частей.
На основании теоремы Фалеса решается задача на деление заданного отрезка на n равных частей.
План построения:
1. Из одного конца отрезка (точки А) провести луч p под углом к отрезку (предпочтительно острым).
2. На луче p отложить n равных отрезков произвольной длины (AP1 = P1P2 = P2P3 = … =Pn-1C).
3. Соединить конец последнего отрезка (точку С) с концом данного отрезка (точкой В).
4. Через точки деления отрезка АС (P1, P2, …, Pn-1) провести прямые, параллельные отрезку СВ, до пересечения с отрезком АВ в точках N1, N2, …, Nn-1.
Доказательство:
Так как отрезки, отложенные на луче р, равны (AP1 = P1P2 = P2P3 = … =Pn-1C), то, согласно теореме Фалеса, на отрезке АВ отложились равные между собой отрезки (AN1 = N1N2 = N2N3 = … =Nn-1B).
Билет № 3.