
- •3. Задача.
- •3. Задача.
- •1. Определение и свойства равнобедренного треугольника. Доказательство теоремы о свойстве медианы равнобедренно го треугольника, проведенной к его основанию.
- •2. Теорема Менелая.
- •1. Определение равных треугольников. Сформулировать признаки равенства треугольников и доказать один из них.
- •2. Деление отрезка на n равных частей. Доказательство теоремы Фалеса.
- •1. Дополнительное построение: Через точку в2 проведем прямую fe II oa, такую, что
- •2. Полученные четырехугольники fa1a2b2 и еa3a2b2 являются параллелограммами по определению (противоположные стороны попарно параллельны). По свойству параллелограмма:
- •3. Рассмотрим ∆ fb1b2 и ∆в2b3е.
- •2. Разобьем отрезок oa2 на m равных частей длины х. При этом точка a1 будет одной из точек деления.
- •3. Проведем через точки деления прямые, параллельные прямой a1b1. Их получится столько, сколько точек деления на отрезке oa1.
- •5. Тогда
- •1. Пропорциональные отрезки в круге (доказать теоремы о пересекающихся хордах, пересекающихся секущих, секущей и касательной, проведенных из одной точки к окружности.
- •2. Вывод формулы для вычисления суммы внутренних углов выпуклого многоугольника.
- •1. Определение параллельных прямых. Свойства параллельных прямых. Доказательство признаков параллельности прямых.
- •1. Определение вписанного угла. Доказательство теоремы о градусной мере вписанного угла.
- •1). Одна из сторон вписанного угла проходит через центр окружности.
- •2). Центр окружности лежит внутри вписанного угла.
- •3). Центр окружности лежит вне вписанного угла. Вне угла еас проведем луч ат через центр окружности. Согласно аксиоме измерения углов
- •2. Вывод формул площади треугольника:
- •1) Пусть авс – остроугольный, тогда bn ac лежит внутри треугольника.
- •2) Пусть авс – тупоугольный с тупым углом с и bn ac лежит внутри треугольника.
- •1. Определение внешнего угла треугольника. Доказательство теоремы о свойстве внешнего угла треугольника.
- •2. Нахождение значений синуса, косинуса, тангенса, котангенса углов в 30, 45, 60.
- •1. Геометрическое место точек. Теоремы о геометрическом месте точек, равноудаленных от концов отрезка; равноудаленных от сторон угла.
- •2. Определение круга. Формула для вычисления площади круга (без вывода). Вывод формулы площади кругового сектора и кругового сегмента.
- •2. Определение тригонометрических функций острого угла прямоугольного треугольника, основные тригонометрические тождества с выводом.
- •3). Доказательство:
- •2. Определение окружности. Формула для вычисления длины окружности (без вывода). Вывод формулы длины дуги окружности. Теоремы о дугах и хордах.
- •1. Соединим точки в и е с центром окружности.
- •2. Рассмотрим треугольники сов и eof.
- •2. Рассмотрим треугольники aов и eod.
- •1. Определение параллелограмма и его свойства (с доказательством).
- •1). Циркулем из вершины угла а проводим дугу произвольного радиуса до пересечения со сторонами угла в точках в и с.
- •2). Из точек в и с проводим дуги одинакового радиуса до пересечения в точке d.
- •3). Из точки a через точку d проводим луч ad.
- •1. Признаки параллелограмма (с доказательством). Построение параллелограмма по двум сторонам и диагонали.
- •2. Определение вневписанной окружности. Теорема о центре вневписанной окружности.
- •2. Точка о пересечения внешних биссектрис равноудалена от прямых, содержащих стороны ab и bc. Поэтому через нее проходит биссектриса внутреннего угла a.
- •1. Определение прямоугольника. Доказательство свойств и признаков прямоугольника.
- •2. Теорема Птолемея.
- •2. Рассмотрим треугольники вка и сda.
- •3. Рассмотрим треугольники akd и abc.
- •1. Определение ромба. Доказательство свойств и признаков ромба. Вывод формулы площади ромба
- •2. Выражение радиуса окружности, вписанной в прямоугольный треугольник, через его стороны (вывод формулы).
- •1. Построение отрезков
- •2. Определение вписанного четырехугольника. Доказательство теоремы о свойстве углов вписанного четырехугольника.
- •1) Точка c находится вне окружности,
- •2) Она лежит внутри окружности.
- •1. Определение средней линии треугольника и трапеции. Доказательство теорем о средней линии треугольника и трапеции.
- •Рассмотрим mbn и npc.
- •2. Построение окружности, вписанной в треугольник и описанной около него.
- •1. Определение подобных треугольников. Сформулировать лемму об отношении площадей подобных треугольников. Доказательство первого признака подобия треугольников.
- •2. Критерий пересекаемости трех чевиан треугольника в одной точке (прямая и обратная теоремы Чевы).
- •1. Вывод формулы Герона.
- •1) Зная стороны треугольника, найти его высоты;
- •2) Выразить площадь треугольника через его стороны.
- •2. Свойство чевианы о разбиении площади треугольника на части. Теоремы о «ласточкином хвосте».
- •1. Вывод формул площади параллелограмма:
- •2. Доказательство теоремы об отношении отрезков медиан, на которые они делятся центром тяжести.
- •1. Теорема Пифагора и обратная ей. Пифагоровы тройки чисел, египетский треугольник.
- •2. Все треугольники т1, т2, т3, т4 равны треугольнику т по двум катетам. Следовательно, их гипотенузы равны гипотенузе треугольника т, т. Е. Отрезку с.
- •4. Четырехугольник р – равносторонний, все его углы прямые квадрат.
- •4). Докажем равенство сторон ав и а1в1.
- •5). Докажем равенство треугольников авс и а1в1с1.
- •6). Таким образом, треугольник авс – прямоугольный с прямым углом с.
- •1. Определение трапеции. Вывод формулы площади трапеции. Построение трапеции по ее основаниям и боковым сторонам.
- •2. Доказательство теорем об углах, образованных пересекающимися хордами; об углах, образованных секущими, проведенными к окружности из одной точки.
- •1. Теорема синусов.
- •1). Проведем из точки в перпендикуляр к стороне ас.
- •2. Построение прямой, параллельной данной; прямой, перпендикулярной данной.
- •1. Теорема косинусов.
- •2. Построение вневписанной окружности. Соотношения между радиусами вписанной, описанной и вневписанной окружностей.
- •1. Теорема об отношении площадей треугольников, имеющих по одному равному углу. Вывод формул площадей треугольников через радиусы вписанной и описанной окружностей.
- •2. ∆ А1в1с2 и ∆ а1в1с1 имеют общую высоту в1н, следовательно
- •3. ∆ А1в2с2 и ∆ а1в1с2 имеют общую высоту с2к, следовательно
- •4. Найдем отношение площадей ∆ а1в1с1 и ∆ а2в2с2
- •2. Описанный четырехугольник. Свойство сторон описанного четырехугольника. Формула площади вписанного четырехугольника Частный случай формулы (диагонали взаимно перпендикулярны).
- •1) Cd не пересекает окружность,
- •2) Cd пересекает окружность.
- •1. Определение подобных многоугольников. Построение многоугольника, подобного данному. Теоремы об отношении периметров и площадей подобных многоугольников.
- •1). Подобные многоугольники можно разложить на одинаковое число подобных и одинаково расположенных треугольников.
- •2. Неравенство треугольника.
- •1. Дополнительное построение:
- •2. Рассмотрим вcd:
- •1. Определение смежных и вертикальных углов. Доказательство теорем о свойстве смежных и вертикальных углов.
- •2. Свойства равнобедренной трапеции.
- •1. Взаимное расположение прямой и окружности. Характерное свойство касательной. Признак касательной. Доказать.
- •2. Пропорциональные отрезки в трапеции.
1. Вывод формул площади параллелограмма:
Теорема
1.
Площадь параллелограмма равна
произведению его стороны и проведенной
к ней высоты:
Д
оказательство:
Теорема
2.
Площадь параллелограмма равна
произведению его сторон и синуса
угла между ними:
Д
оказательство:
Теорема 3. Площадь выпуклого многоугольника равна половине произведения его диагоналей и синуса угла между ними.
Д
ано:
ABCD
– выпуклый четырехугольник;
АС и BD – диагонали; AC∩BD = {O}; AOB =.
Доказать:
Доказательство:
2. Доказательство теоремы об отношении отрезков медиан, на которые они делятся центром тяжести.
Теорема о свойстве медиан треугольника. Три медианы пересекаются в одной точке. Эта точка делит каждую из медиан в отношении 2:1, считая от вершины.
Д
оказательство:
1).
Медиана АА1
пересекает АВ в точке А1.
Медиана ВВ1
пересекает АС в точке В1.
Тогда А1В1–
средняя линия.
2). Рассмотрим АОВ и А1ОВ1.
3). Из подобия треугольников:
4). Аналогично доказывается, что точка О делит медиану СС1 в отношении 2:1.
Билет № 19.
1. Теорема Пифагора и обратная ей. Пифагоровы тройки чисел, египетский треугольник.
Т
еорема
Пифагора (прямая).
В прямоугольном треугольнике квадрат
гипотенузы равен сумме квадратов
катетов.
Если
Т – прямоугольный треугольник с
катетами a
и b
и гипотенузой с, то теорема утверждает,
что
где
это численные значения площадей
квадратов со сторонами a,
b
и с. Поэтому равенство
означает, что площадь
квадрата, построенного на гипотенузе,
равна сумме площадей квадратов,
построенных на катетах.
Пифагор, именем которого названа эта теорема, жил в VI веке до н. э. Теорема, носящая его имя, была известна еще в Древнем Египте и Вавилоне, но только как факт, выведенный из измерений. Пифагор нашел доказательство этой теоремы.
Доказательство:
1. Построим квадрат Q со стороной a + b. На сторонах квадрата Q возьмем точки А, В, С, D так, чтобы отрезки АВ, ВС, СD и AD отсекали от квадрата Q четыре прямоугольных треугольника Т1, Т2, Т3, Т4 с катетами а и b.
2. Все треугольники т1, т2, т3, т4 равны треугольнику т по двум катетам. Следовательно, их гипотенузы равны гипотенузе треугольника т, т. Е. Отрезку с.
3. Пусть и - величины острых углов треугольника Т. Тогда + = 90. Угол при вершине А четырехугольника Р вместе с углами и образует развернутый угол + + = 180.
= 180 ̶ ̶ = 180 ̶ 90 = 90.
4. Четырехугольник р – равносторонний, все его углы прямые квадрат.
5.
S(Q)
= 4S(T)
+ S(P);
Теорема Пифагора (обратная). Если квадрат одной из сторон треугольника равен сумме квадратов двух других его сторон, то этот треугольник прямоугольный.
Доказательство:
1). Пусть в АВС АВ2 = АС2 + ВС2. Докажем, что угол С – прямой.
2). Рассмотрим прямоугольный А1В1С1 с прямым углом С1, у которого А1С1 = АС, В1С1 = ВС.
3). В А1В1С1 по теореме Пифагора (А1В1)2 = (А1С1)2 + (В1С1)2. Следовательно (А1В1)2 = АС2 + ВС2.