
- •О.Ю. Ермолаев математическая статистика для психологов Учебник
- •Глава 8 критерии согласия распределений и
- •Глава 10 введение в дисперсионный анализ anova 178
- •Глава 11 корреляционный анализ 202
- •Глава 13 факторный анализ 274
- •Введение
- •Глава 1 понятие измерения
- •1.1. Измерительные шкалы
- •1.2. Номинативная шкала (шкала наименований)
- •1.3. Порядковая (ранговая, ординарная) шкала
- •1.3.1. Правила ранжирования
- •1.3.2. Проверка правильности ранжирования
- •1.3.3. Случай одинаковых рангов
- •1.4. Шкала интервалов
- •1.5. Шкала отношений
- •Глава 2 понятие выборки
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •Глава 3 формы учета результатов измерений
- •3.1. Таблицы
- •3.2. Статистические ряды
- •3.3. Понятие распределения и гистограммы
- •Глава 4
- •4.1. Мода
- •4.2. Медиана
- •4.3. Среднее арифметическое
- •4.4. Разброс выборки
- •4.5. Дисперсия
- •Степень свободы
- •4.7. Понятие нормального распределения
- •Стандартизация по шкалам:
- •Глава 5 общие принципы проверки статистических гипотез
- •5.1. Проверка статистических гипотез
- •5.2. Нулевая и альтернативная гипотезы
- •5.3. Понятие уровня статистической значимости
- •5.4. Этапы принятия статистического решения
- •5.5. Классификация психологических задач, решаемых с помощью статистических методов
- •Глава 6 статистические критерии различий
- •Выбор метода статистического вывода
- •Классификация методов статистического вывода
- •Методы сравнения (X— качественный, y— количественный)
- •6.1.1. Параметрические и непараметрические критерии
- •6.1.2. Рекомендации к выбору критерия различий
- •6.2. Непараметрические критерии для связных выборок
- •6.2.1. Критерий знаков g
- •6.2.2. Парный критерий т — Вилкоксона
- •6.2.3. Критерий Фридмана
- •6.2.4. Критерий Пейджа
- •6.2.5. Критерий Макнамары
- •Глава 7 непараметрические критерии для несвязных выборок
- •7.1. Критерий u Вилкоксона-Манна-Уитни
- •7.1 1. Первый способ расчета по критерию u
- •7.1.2. Второй способ расчета по критерию u
- •7.2. Критерий q Розенбаума
- •Глава 8 критерии согласия распределений и многофункциональный критерий «φ»
- •8.1. Критерий хи-квадрат
- •8.1.1. Сравнение эмпирического распределения с теоретическим
- •8.1.2. Сравнение двух экспериментальных распределений
- •8.1.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •8.2. Критерий Колмогорова-Смирнова
- •8.3. Критерий Фишера — φ
- •8.3.1. Сравнение двух выборок по качественно определенному признаку
- •8.3.2. Сравнение двух выборок по количественно определенному признаку
- •Глава 9 параметрические критерии различия
- •9.1.1. Случай несвязных выборок
- •9.1.2. Случай связных выборок
- •Глава 10 введение в дисперсионный анализ anova
- •10.1. Однофакторный дисперсионный анализ
- •10.2. «Быстрые» методы — критерии дисперсионного анализа
- •10.2.1. Критерий Линка и Уоллеса
- •10.2.2. Критерий Немени
- •Глава 11 корреляционный анализ
- •11.1. Понятие корреляционной связи
- •11.2. Коэффициент корреляции Пирсона
- •11.3. Коэффициент корреляции рангов Спирмена
- •11.3.1. Случай одинаковых (равных) рангов
- •11.4. Расчет уровней значимости коэффициентов корреляции
- •11.5. Коэффициент корреляции «φ»
- •11.5.1. Второй способ вычисления коэффициента «φ»
- •11.6. Коэффициент корреляции «τ» Кендалла
- •11.7. Бисериальный коэффициент корреляции
- •11.8. Рангово-бисериальный коэффициент корреляции
- •11.9. Корреляционное отношение Пирсона η
- •11.10. Множественная корреляция
- •11.11. Частная корреляция
- •Глава 12 регрессионный анализ
- •12.1. Линейная регрессия
- •12.2. Множественная линейная регрессия
- •12.3. Оценка уровней значимости коэффициентов регрессионного уравнения
- •12.4. Нелинейная регрессия
- •Глава 13 факторный анализ
- •13.1. Основные понятия факторного анализа
- •13.2. Условия применения факторного анализа
- •13.3. Приемы для определения числа факторов
- •13.4. Вращение факторов
- •13.5. Использование факторного анализа в психологии
- •Приложение Пример использования методов математической статистики в дипломной работе
- •Приведем оглавление диплома:
- •Глава I. Теоретические основы агрессивности и тревожности личности.
- •Глава II. Основные результаты выполненного исследования агрессивности и тревожности личности и их зависимости от уровня субъективного контроля.
- •Методика Басса—Дарки
- •Литература
1.3.3. Случай одинаковых рангов
При выставлении экспертных оценок или в других случаях ранжирования возникают ситуации, когда двум или большему числу качеств приписываются одинаковые ранги. Рассмотрим такой случай применительно к примеру 1.2, в котором ранжировались семь личностных качеств. Для иллюстрации разобьем первый и второй столбцы в таблице 1.2 на две части, представив ее в виде таблицы 1.6:
Таблица 1.6
Я реальное |
Качества личности |
Я идеальное |
||
7 |
7 |
Ответственность |
1 |
1 |
1 |
1 |
Общительность |
5 |
(5) |
(3) |
2,5 |
Настойчивость |
7 |
7 |
(2) |
2,5 |
Энергичность |
5 |
(6) |
5 |
5 |
Жизнерадостность |
5 |
(4) |
4 |
4 |
Терпеливость |
3 |
3 |
6 |
6 |
Решительность |
2 |
2 |
Предположим, что при оценке особенностей «Я реального» испытуемый считает, что такие качества как «настойчивость» и «энергичность» должны иметь один и тот же ранг. Тогда при проведении ранжирования (см. столбец № 1 таблицы 1.6) этим качествам необходимо проставить условные ранги, обязательно идущие по порядку друг за другом — и отметить эти ранги круглыми скобками — ( ). Однако, поскольку эти качества, по мнению испытуемого, должны иметь одинаковые ранги, во втором столбце таблицы 1.6, относящемуся к «Я реальному» следует поместить среднее арифметическое рангов, проставленных в скобках, т.е. (2+3)/2=2,5 . Таким образом, второй столбец таблицы 1.6 и будет окончательным итогом ранжирования особенностей «Я реального» данным испытуемым.
Проверим правильность ранжирования. Вначале складываем реальные ранги, полученные во втором столбце таблицы 1.6: 1 + 2, 5 + 2, 5 + 5 + 4 + 6 = 28
Мы помним, что по формуле (1.1) сумма рангов также равнялась 28. Следовательно, ранжирование проведено правильно.
Предположим, что при ранжировании качеств, относящихся к «Я идеальному», испытуемый считает, что таким качествам как: «общительность», «энергичность» и «жизнерадостность» нужно проставить одинаковые ранги. В таком случае этим качествам он ставит условные ранги по порядку в круглых скобках в последнем пятом столбце таблицы 1.6.
Среднее арифметическое условных рангов (4 + 5 + 6)/3 = 5 и есть искомый ранг, который приписывается трем вышеназванным качествам, в четвертом столбце таблицы 1.6
Подчеркнем еще раз, что условные ранги должны располагаться по порядку величин, несмотря на то, что ранжируемые качества не находятся рядом друг с другом.
Проверим опять правильность ранжирования, суммируя полученные в четвертом столбце ранги: 1 + 2 + 3 + 5 + 5 + 5 + 7 = 28
Мы помним, что по формуле (1.1) сумма рангов также равнялась 28. Следовательно, ранжирование проведено правильно.
Одинаковые ранги можно присваивать любому числу ранжируемых величин. В таком случае им также приписывается величина среднего арифметического от количества условных рангов, проставляемых по порядку их величин.
Рассмотрим особенности ранжирования количественных характеристик. Несмотря на то, что ранжирование широко используется применительно к количественным показателям, следует помнить, что в порядковой шкале операции с числами — это по сути дела операции с рангами (порядками), но не с количественным выражением свойств (качеств, признаков и т.п.) как таковых.
В этом случае правила ранжирования таковы:
Наименьшему числовому значению приписывается ранг 1.
Наибольшему числовому значению приписывается ранг, равный количеству ранжируемых величин.
В случае если несколько исходных числовых значений оказались равными, то им приписывается ранг, равный средней величине тех рангов, которые эти величины получили бы, если бы они стояли по порядку друг за другом и не были бы равны.
Отметим, что под этот случай могут попасть как первые, так и последние величины исходного ряда для ранжирования.
Общая сумма реальных рангов должна совпадать с расчетной, определяемой по формуле (1.1).
Не рекомендуется ранжировать более чем 20 величин (признаков, качеств, свойств и т.п.), поскольку в этом случае ранжирование в целом оказывается малоустойчивым.
При необходимости ранжирования достаточно большого числа объектов их следует объединять по какому-либо признаку в достаточно однородные классы (группы), а затем уже ранжировать полученные классы (группы).
Пример 1.2. Психолог получил у 11 испытуемых следующие значения показателя невербального интеллекта: 113, 107, 123, 122, 117, 117, 105, 108, 114, 102, 104. Необходимо проранжировать эти показатели, и лучше всего это сделать в таблице:
Таблица 1.7
№ испытуемых п/п |
Показатели интеллекта |
Ранги |
1 |
113 |
6 |
2 |
107 |
4 |
3 |
123 |
11 |
4 |
122 |
10 |
5 |
117 |
(8) 8,5 |
6 |
117 |
(9) 8,5 |
7 |
105 |
3 |
8 |
108 |
5 |
9 |
114 |
7 |
10 |
102 |
1 |
11 |
104 |
2 |
В
этой таблице условные и реальные ранги
располагались в одном столбце, что
удобнее и экономит много места.
Проверим правильность ранжирования по формуле (1.1): подставляем исходные значения в формулу, получаем: 11∙12/2=66.
Суммируем реальные ранги, получаем:
6 + 4 + 11 + 10 + 8,5 + + 8,5 + 3 + 5 + 7 + 1 + 2 = 66.
Поскольку суммы совпали, следовательно, ранжирование проведено правильно.
В ранговой шкале применяется множество разнообразных статистических методов, часть из которых будет описана ниже. Наиболее часто к измерениям, полученным в этой шкале, применяются коэффициенты корреляции Спирмена и Кэндалла, кроме того, применительно к данным, полученным в этой шкале, используют разнообразные критерии различий.