
- •О.Ю. Ермолаев математическая статистика для психологов Учебник
- •Глава 8 критерии согласия распределений и
- •Глава 10 введение в дисперсионный анализ anova 178
- •Глава 11 корреляционный анализ 202
- •Глава 13 факторный анализ 274
- •Введение
- •Глава 1 понятие измерения
- •1.1. Измерительные шкалы
- •1.2. Номинативная шкала (шкала наименований)
- •1.3. Порядковая (ранговая, ординарная) шкала
- •1.3.1. Правила ранжирования
- •1.3.2. Проверка правильности ранжирования
- •1.3.3. Случай одинаковых рангов
- •1.4. Шкала интервалов
- •1.5. Шкала отношений
- •Глава 2 понятие выборки
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •Глава 3 формы учета результатов измерений
- •3.1. Таблицы
- •3.2. Статистические ряды
- •3.3. Понятие распределения и гистограммы
- •Глава 4
- •4.1. Мода
- •4.2. Медиана
- •4.3. Среднее арифметическое
- •4.4. Разброс выборки
- •4.5. Дисперсия
- •Степень свободы
- •4.7. Понятие нормального распределения
- •Стандартизация по шкалам:
- •Глава 5 общие принципы проверки статистических гипотез
- •5.1. Проверка статистических гипотез
- •5.2. Нулевая и альтернативная гипотезы
- •5.3. Понятие уровня статистической значимости
- •5.4. Этапы принятия статистического решения
- •5.5. Классификация психологических задач, решаемых с помощью статистических методов
- •Глава 6 статистические критерии различий
- •Выбор метода статистического вывода
- •Классификация методов статистического вывода
- •Методы сравнения (X— качественный, y— количественный)
- •6.1.1. Параметрические и непараметрические критерии
- •6.1.2. Рекомендации к выбору критерия различий
- •6.2. Непараметрические критерии для связных выборок
- •6.2.1. Критерий знаков g
- •6.2.2. Парный критерий т — Вилкоксона
- •6.2.3. Критерий Фридмана
- •6.2.4. Критерий Пейджа
- •6.2.5. Критерий Макнамары
- •Глава 7 непараметрические критерии для несвязных выборок
- •7.1. Критерий u Вилкоксона-Манна-Уитни
- •7.1 1. Первый способ расчета по критерию u
- •7.1.2. Второй способ расчета по критерию u
- •7.2. Критерий q Розенбаума
- •Глава 8 критерии согласия распределений и многофункциональный критерий «φ»
- •8.1. Критерий хи-квадрат
- •8.1.1. Сравнение эмпирического распределения с теоретическим
- •8.1.2. Сравнение двух экспериментальных распределений
- •8.1.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •8.2. Критерий Колмогорова-Смирнова
- •8.3. Критерий Фишера — φ
- •8.3.1. Сравнение двух выборок по качественно определенному признаку
- •8.3.2. Сравнение двух выборок по количественно определенному признаку
- •Глава 9 параметрические критерии различия
- •9.1.1. Случай несвязных выборок
- •9.1.2. Случай связных выборок
- •Глава 10 введение в дисперсионный анализ anova
- •10.1. Однофакторный дисперсионный анализ
- •10.2. «Быстрые» методы — критерии дисперсионного анализа
- •10.2.1. Критерий Линка и Уоллеса
- •10.2.2. Критерий Немени
- •Глава 11 корреляционный анализ
- •11.1. Понятие корреляционной связи
- •11.2. Коэффициент корреляции Пирсона
- •11.3. Коэффициент корреляции рангов Спирмена
- •11.3.1. Случай одинаковых (равных) рангов
- •11.4. Расчет уровней значимости коэффициентов корреляции
- •11.5. Коэффициент корреляции «φ»
- •11.5.1. Второй способ вычисления коэффициента «φ»
- •11.6. Коэффициент корреляции «τ» Кендалла
- •11.7. Бисериальный коэффициент корреляции
- •11.8. Рангово-бисериальный коэффициент корреляции
- •11.9. Корреляционное отношение Пирсона η
- •11.10. Множественная корреляция
- •11.11. Частная корреляция
- •Глава 12 регрессионный анализ
- •12.1. Линейная регрессия
- •12.2. Множественная линейная регрессия
- •12.3. Оценка уровней значимости коэффициентов регрессионного уравнения
- •12.4. Нелинейная регрессия
- •Глава 13 факторный анализ
- •13.1. Основные понятия факторного анализа
- •13.2. Условия применения факторного анализа
- •13.3. Приемы для определения числа факторов
- •13.4. Вращение факторов
- •13.5. Использование факторного анализа в психологии
- •Приложение Пример использования методов математической статистики в дипломной работе
- •Приведем оглавление диплома:
- •Глава I. Теоретические основы агрессивности и тревожности личности.
- •Глава II. Основные результаты выполненного исследования агрессивности и тревожности личности и их зависимости от уровня субъективного контроля.
- •Методика Басса—Дарки
- •Литература
9.1.2. Случай связных выборок
В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.
Вычисление значения tэмп осуществляется по формуле:
Где
где d. = х. - у. — разности между соответствующими значениями переменной X и переменной Y, а I среднее этих разностей. В свою очередь Sd вычисляется по следующей формуле:
Число степеней свободы к определяется по формуле k = n - 1.
Рассмотрим пример использования t-критерия Стьюдента для связных и, очевидно, равных по численности выборок.
Задача 9.2. Психолог предположил, что в результате научения время решения эквивалентных задач «игры в 5» (т.е. имеющих один и тот же алгоритм решения) будет значимо уменьшаться. Для проверки гипотезы у восьми испытуемых сравнивалось время решения (в минутах) первой и третьей задач.
Решение. Решение задачи представим в виде таблицы 9.2:
Таблица 9.2
№ испыт. |
1 задача |
3 задача |
d |
d2 |
1 |
4,0 |
3,0 |
1,0 |
1,0 |
2 |
3,5 |
3,0 |
0,5 |
0,25 |
3 |
4,1 |
3,8 |
0,3 |
0,09 |
4 |
5,5 |
2,1 |
3,4 |
11,56 |
5 |
4.6 |
4,9 |
-0,3 |
0,09 |
6 |
6,0 |
5,3 |
0,7 |
0,49 |
7 |
5,1 |
3,1 |
2,0 |
4,00 |
8 |
4,3 |
2,7 |
1,6 |
2,56 |
Суммы |
37,1 |
27,9 |
9,2 |
20,04 |
Вначале произведем расчет по формуле (9.7):
Затем применим формулу (9.8), получим:
И, наконец, следует применить формулу (9.6). Получим:
Число степеней свободы: k = 8-1 = 7 и по таблице 16 Приложения 1 находим iкр:
Строим «ось значимости»:
Таким образом, на 5% уровне значимости первоначальное предположение подтвердилось, действительно, среднее время решения третьей задачи существенно меньше среднего времени решения первой задачи. В терминах статистических гипотез полученный результат будет звучать так: на 5% уровне гипотеза Но отклоняется и принимается гипотеза Н1 — о различиях.
Для применения t-критерия Стьюдента необходимо соблюдать следующие условия:
Измерение может быть проведено в шкале интервалов и отношений.
Сравниваемые выборки должны быть распределены по нормальному закону
9.2. F - критерий Фишера
Критерий Фишера позволяет сравнивать величины выборочных дисперсий двух рядов наблюдений. Для вычисления Fэмп нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая знаменателе. Формула вычисления по критерию Фишера F такова:
Где
и
Поскольку, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значение Fэмп всегда будет больше или равно единице, т.е. Fэмп ≥ 1. Число степеней свободы определяется также просто: df1 = n1 - 1 для первой (т.е. для той выборки, величина дисперсии которой больше) и df2 = n2 - 1 для второй выборки. В таблице 17 Приложения 1 критические значения критерия Фишера Fкр находятся по величинам df1 (верхняя строчка таблицы) и df2 (левый столбец таблицы).
Задача 9.3. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.
Решение. Для критерия Фишера необходимо сравнить дисперсии тестовых оценок в обоих классах. Результаты тестирования представлены в таблице:
Таблица 9.3
№№ учащихся п/п |
Первый класс X |
Второй класс Y |
№№ учащихся п/п |
Первый класс X |
Второй класс Y |
1 |
90 |
41 |
6 |
53 |
65 |
2 |
29 |
49 |
7 |
34 |
63 |
3 |
39 |
56 |
8 |
40 |
87 |
4 |
79 |
64 |
9 |
75 |
77 |
5 |
88 |
72 |
10 |
79 |
62 |
Суммы |
|
606 |
636 |
||
Среднее |
|
60,6 |
63,6 |
Как видно из таблицы 9.3, величины средних в обеих группах практически совпадают между собой 60,6 = 63,6 и величина t-критерия Стьюдента оказалась равной 0,347 и незначимой.
Рассчитав дисперсии для переменных X и Y, получаем
S2х = 572,83
S2y = 174,04
Тогда по формуле (9.9) для расчета по F критерию Фишера находим:
По таблице 17 Приложения 1 для F критерия при степенях свободы в обоих случаях равных df= 10 - 1 = 9 находим Fкр.
Строим «ось значимости»:
Таким образом, полученная величина Fэмп попала в зону неопределенности. В терминах статистических гипотез можно утверждать, что Но (гипотеза о сходстве) может быть отвергнута на уровне 5%, а принимается в этом случае гипотеза Н1 Психолог может утверждать, что по степени однородности такого показателя, как умственное развитие, имеется различие между выборками из двух классов.
Для применения критерия F Фишера необходимо соблюдать следующие условия:
Измерение может быть проведено в шкале интервалов и отношений.
Сравниваемые выборки должны быть распределены по нормальному закону