Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ким К.К. Теория ЭМ поля, ч. 2.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
2.06 Mб
Скачать

4.2. Вектор Пойнтинга

Для анализа электромагнитных полей, широко используют вектор Пойнтинга . Этот вектор имеет размерность мощности (энергии в единицу времени), передаваемой сквозь единицу поверхности, нормальной к направлению распространения волны, и определяется следующим соотношением:

(4.5)

В теории электромагнитного поля довольно большое значение имеет теорема Умова-Пойнтинга, которая описывает энергетические соотношения в поле

(4.6)

Левая часть данного выражения представляет поток вектора Пойнтинга (направленный внутрь объема V) сквозь любую замкнутую поверхность S, ограничивающую некоторый объем V. Часто уравнение (4.6) записывают и в таком виде

(4.7)

Здесь WЭ и WМ – энергия соответственно электрического и магнитного поля, заключенных в объеме V.

В более общем случае, внутри объема V могут существовать источники электромагнитной энергии, в которых совершается преобразование энергии какого-либо вида или механической работы в электромагнитную энергию. Обозначив через ре мощность этих источников, получим

(4.8)

4.3. Электродинамические векторный и скалярный потенциалы

Для удобства исследования электромагнитного (так же как и при рассмотрении статических и стационарных полей) поля вводят в рассмотрение векторный магнитный потенциал и скалярный электрический потенциал. Естественно, что при этом эти потенциалы являются функциями не только координат, но и времени. При этом векторный магнитный потенциал связан с вектором магнитной индукции посредством уравнения (3.6) (что вытекает из закона непрерывности магнитного потока), а скалярный потенциал электромагнитного поля U удовлетворяет следующему уравнению:

(4.9)

Кроме данного уравнения (с целью упрощения) скалярный потенциал связывают с векторным потенциалом посредством ввода так называемого калибровочного условия

. (4.10)

После подстановки этих потенциалов в уравнения Максвелла и некоторых преобразований (с учетом условия (4.10)), получают для них уравнения Даламбера

(4.11)

(4.12)

Здесь - плотность тока проводимости.

В области, где нет свободных зарядов (=0) и нет токов проводимости и переноса уравнения (4.11) и (4.12) приобретают вид волновых уравнений:

Переменное электромагнитное поле создается токами и зарядами, зависящими не только от координат, но и от времени (=(x,y,z,t), =(x,y,z,t), поэтому решение уравнений (4.11) и (4.12) в сферической системе координат может быть представлено в следующем виде:

(4.13)

(4.14)

Здесь - значение вектора плотности тока в элементе объема dv в момент времени (t-r/), предшествующий моменту времени t, в который определяется векторный потенциал; - значение объемной плотности заряда в момент времени (t-r/), предшествующий моменту времени t, в который определяется U.

В связи с этим, скалярный U и векторный А потенциалы, выраженные формулами (4.13) и (4.14) называют электродинамическими запаздывающими потенциалами.

Наиболее часто понятием запаздывающих потенциалов пользуются в радиотехнике при рассмотрении вопросов, связанных с излучением электромагнитной энергии.