Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вариант 15, 16.docx
Скачиваний:
0
Добавлен:
18.01.2020
Размер:
5.8 Mб
Скачать

Вариант 15.

1.Классификация свойств ферромагнетиков.

Ферромагнетиками называются вещества, обладающие, в отсутствие внешнего магнитного поля, спонтанной намагниченностью в определенном интервале температур; это материалы, в которых собственное (внутреннее) магнитное поле может в сотни и тысячи раз превышать вызвавшее его внешнее магнитное поле. Ферромагнетизм обнаруживают кристаллы только девяти химических элементов: три 3d-металла (Fe, Co, Ni) и шесть 4f-металла (Gd, Dy, Tb, Ho, Er, Tm). Однако имеется также большое число сплавов и химических соединений, обладающих ферромагнитными свойствами. Общим признаком для всех ферромагнетиков является наличие атомов с недостроенными d- или f-оболочками. Такие атомы имеют нескомпенсированный магнитный момент. Наличие спонтанной намагниченности свидетельствует о том, что магнитные моменты атомов в определенных областях ферромагнетика ориентированы не случайным образом, как в парамагнетике, а упорядоченно-параллельно друг другу. Опытами Эйнштейна – де Газа и Барнетта было доказано, что ферромагнетизм связан с упорядочением спиновых магнитных моментов атомов. В ферромагнетике межатомное взаимодействие приводит к появлению сил, выстраивающих спиновые магнитные моменты электронов параллельно друг другу. В результате этого в ферромагнетике образуются области спонтанной намагничеснности, называемые доменами. Домен – микроскопическая область ферромагнетика размером 10-3 – 10-2 см, которая спонтанно намагничена до насыщения и обладает определенным магнитным моментом. Направления магнитных моментов у различных доменов различны. Поэтому в отсутствие внешнего магнитного поля суммарный магнитный момент всего объема ферромагнетика равен нулю. Представление о доменах позволяет объяснить закономерности намагничивания ферромагнетиков.

При воздействии внешнего магнитного поля магнитные моменты доменов приобретают преимущественное ориентирование в направлении этого поля и ферромагнитное вещество намагничивается. Ферромагнитные вещества характеризуются большим значением магнитной восприимчивости (>> 1), а также ее нелинейной зависимостью от напряженности магнитного поля и температуры, способностью намагничиваться до насыщения при обычных температурах даже в слабых магнитных полях, гистерезисом — зависимостью магнитных свойств от предшествующего магнитного состояния, точкой Кюри, т. е. температурой, выше которой материал теряет ферромагнитные свойства.

Существует три типа процессов намагничивания ферромагнетиков:

1. Процесс обратимого смещения магнитных доменов. В данном случае происходит смещение границ доменов, ориентированных наиболее близко к направлению внешнего поля. При снятии поля домены смещаются в обратном направлении. Область обратимого смещения доменов расположена начальном участке кривой намагничивания.

2. Процесс необратимого смещения магнитных доменов. В данном случае смещение границ между магнитными доменами не снимается при снижении магнитного поля. Исходные положения доменов могут быть достигнуты в процессе перемагничивания.

Необратимое смещение границ доменов приводит к появлению магнитного гистерезиса – отставанию магнитной индукции от напряженности поля .

3. Процессы вращения доменов. В данном случае завершение процессов смещения границ доменов приводит к техническому насыщению материала. В области насыщения все домены поворачиваются по направлению поля. Петля гистерезиса, достигающая области насыщения называется предельной.

Предельная петля гистерезиса имеет следующие характеристики: Bmax – индукция насыщения; Br – остаточная индукция; Hc - задерживающая (коэрцитивная) сила.

Материалы с малыми значениями Hc (узкой петлей гистерезиса) и большой магнитной проницаемостью называются магнитомягкими.

Материалы с большими значениями Hc (широкой петлей гистерезиса) и низкой магнитной проницаемостью называются магнитотвердыми.

При перемагничивании ферромагнетика в переменных магнитных полях всегда наблюдаются тепловые потери энергии, то есть материал нагревается. Эти потери обусловлены потерями на гистерезис и потерями на вихревые токи. Потери на гистерезис пропорциональны площади петли гистерезиса. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше сопротивление – тем меньше потери на вихревые токи.