
- •Модуль 1
- •Модуль 3
- •Модуль 4
- •Содержательный модуль 1 «термодинамика»
- •1. Предмет и метод термодинамики
- •2. Термодинамическая система
- •3. Параметры состояния рабочего тела.
- •Отнеся работу расширения к 1 кг массы рабочего тела, получим
- •Лекция 4. Второй закон термодинамики (4) план
- •1. Энтропия
- •Из уравнения (2) следует, что в равновесном процессе
- •2. Общая формулировка второго закона
- •3. Прямой цикл карно
- •4. Обобщенный (регенеративный) цикл карно
- •5. Обратный цикл карно
- •7. Статистическое толкование второго
- •8. Эксергия
- •1. Изохорный процесс
- •При переменной теплоемкости
- •2. Изобарный процесс
- •3. Изотермический процесс
- •4. Адиабатный процесс.
- •5. Политропный процесс
- •Содержательный модуль 2 «реальные газы. Водяной пар»
- •Лекция 6. Термодинамические процессы
- •Реальных газов (4)
- •Содержательный модуль 3 «теплопередача» лекция 7. Основные случаи теплообмена. Теплопроводность (4) план
- •1. Определения
- •3. Теплоотдача между стенкой и жидкостью
- •4. Теплопередача через плоскую стенку
- •5. Теплопередача через цилиндрическую стенку
- •Лекция 8. Теплообмен соприкосновением (4) план
- •2. Вычисление коэффициентов теплоотдачи
- •3. Эмпирические формулы
- •5. Теплопередача к кипячей жидкости.
- •Лекция 9. Теплообмен излучением план
- •1. Физические законы излучения
- •3. Излучение газов
- •Лекция 10. Теплообменный аппарат план
- •1. Основные определения
- •2. Определение поверхности нагрева теплообменного аппарата. Средняя разность температур
- •Содержательный модуль 4 «топливо» лекция. Топливо и основы теории горения
- •1. Состав топлива.
- •2. Характеристика топлива
- •3. Моторные топлива для поршневых двс
- •4. Котельный агрегат и его элементы.
- •5. Вспомогательное оборудование котельной установки.
- •6. Тепловой баланс котельного агрегата.
- •Тема 15. Топочные устройства.
- •15.1. Топочные устройства.
- •15.2. Сжигание топлива.
- •15.3. Теплотехнические показатели работы топок.
- •Тема 16.Горение топлива.
- •16.1. Физический процесс горения топлива.
- •16.2. Определение теоретического и действительного расхода воздуха на горение топлива.
- •16.3. Количество продуктов сгорания топлива.
- •Тема 17. Компрессорные установки.
- •17.1. Объемный компрессор.
- •17.2. Лопаточный компрессор.
- •Литература
- •Теплотехника / Баскаков а. П., Берг в. В., Вит о. К. И др. - м.: Энергоиздат, 1991.- 224 с.
- •Теплотехника / Хазен м. М., Матвеев г д., Грицевский м. Е. И др.- м.: Высш. Школа,1981.- 480 с.
- •Швец и.Т., Толубинский в.И., Алабовский а.Е. И др. Теплотехника - к.: "Вища школа", Головное изд - во, 1976.- 517 с.
7. Статистическое толкование второго
НАЧАЛА ТЕРМОДИНАМИКИ
С позиций кинетической теории газов энтропию можно определить как меру неупорядоченности системы. Когда от системы при постоянном давлении отводится теплота, энтропия уменьшается, а упорядоченность в системе повышается. Это можно наглядно продемонстрировать на примере превращения газообразного вещества в твердое.
Молекулы газа движутся беспорядочно. Когда газ при отводе теплоты и соответствующем уменьшении энтропии конденсируется в жидкость, молекулы занимают более определенное положение (некоторое время молекула жидкости колеблется около какого - то положения равновесия, затем положение равновесия смещается и т. д., т. е. происходят одновременно медленные перемещения молекул и их колебания внутри малых объемов). При дальнейшем понижении температуры жидкости энтропия уменьшается, а тепловое движение молекул становится все менее интенсивным. Наконец, жидкость затвердевает, что связано с дальнейшим уменьшением энтропии, неупорядоченность становится еще меньше (молекулы только колеблются около средних равновесных положений).
В кинетической теории газов доказывается, что между энтропией системы в данном состоянии и термодинамической вероятностью этого состояния существует функциональная зависимость. Остановимся на этом подробнее.
Пусть термодинамическая система представляет собой газ. Для определения ее состояния необходимо указать всего два макроскопических параметра, например давление и температуру. Но можно это состояние задать и по-другому, указав, например, положение и скорость каждой из частиц, входящей в систему. Таким образом, в первом случае мы задаем макросостояние системы, во втором - ее микросостояние.
Очевидно, что одно и то же значение термодинамических параметров системы может получиться при различных положениях и скоростях ее частиц, следовательно, одному макросостоянию системы отвечает ряд микросостояний. В статистической механике принято характеризовать каждое макросостояние величиной Р - числом соответствующих микросостояний, реализующих данное макросостояние. Величина Р называется термодинамической вероятностью данного макросостояния.
Если в изолированной
системе происходит самопроизвольный
процесс и термодинамическое состояние
меняется, это свидетельствует о том,
что новое состояние реализуется большим
количеством микросостояний, чем
предыдущее макросостояние. А это
означает, что в результате
самопроизвольного процесса
термодинамическая вероятность состояния
системы растет. Но одновременно
увеличивается и энтропия. Больцман
(1872г.) доказал, что между термодинамической
вероятностью и энтропией системы
существует функциональная зависимость
,
где k
- постоянная Больцмана.
Таким образом, энтропия изолированной системы в каком-либо состоянии пропорциональна натуральному логарифму вероятности данного состояния. Так как природа стремится от состояний менее вероятных к состояниям более вероятным, энтропия изолированной системы уменьшаться не может. Эти два утверждения являются, по сути дела, статистической и феноменологической формулировками второго начала термодинамики. Различие между ними состоит в следующем. Статистическая формулировка утверждает, что в изолированной системе процессы, сопровождающиеся возрастанием энтропии, являются наиболее вероятными (но не являются неизбежными), в то время как феноменологическая формулировка считает такие процессы единственно возможными.
Однако для обычных
систем, состоящих из большого числа
частиц, наиболее вероятное направление
процесса практически совпадает с
абсолютно неизбежным. Поясним это на
следующем примере. Пусть имеется
равновесный газ. Выделим в нем
определенный объем и посмотрим, возможно
ли в этом объеме самопроизвольное
увеличение давления. Из-за теплового
движения число молекул в объеме непрерывно
флуктуирует около среднего значения
N. Одновременно флуктуируют и температура,
и давление, и внутренняя энергия, и т.
д. Теория показывает, что относительная
величина этих флуктуации обратно
пропорциональна корню квадратному
из числа молекул в выделенном объеме,
поэтому
.
Если N велико, то
и самопроизвольное повышение давления
в соответствии со вторым законом
термодинамики отсутствует. Если же
рассматривать сильно разреженный
газ или очень малый объем, в котором
содержится, например, всего 100 молекул,
то
.
В таком объеме наблюдай заметные
самопроизвольные пульсации давления
(в среднем на 10% от среднего), а следовательно,
второй закон термодинамики нарушается.
Поэтому учитывать флуктуации нужно
лишь в том случае, когда число частиц в
рассматриваемой системе мало. Но для
таких систем утрачивают свой обычный
смысл такие термодинамические понятия,
как температура, теплота, энтропия.
Так как число частиц N в реальных физических системах огромно, то и флуктуации и вызываемые ими отклонения от предписываемого термодинамическими законами хода процесса будут ничтожно малы.