
- •3.2. Оптимізація смо за критерієм мінімуму економічних втрат від відмов в обслуговуванні .………………………………..……. 86
- •Анотація
- •Розділ 1. Моделювання випадкових процесів
- •1.1. Марковські випадкові процеси
- •1.2. Процес народження і загибелі
- •У відповідності до раніш введених позначень маємо:
- •Позначаючи , одержимо відповідні ймовірності станів смо
- •1.3. Потоки випадкових подій
- •1.4. Моделювання вхідних і вихідних потоків у смо
- •Розділ 2. Аналіз класичних моделей систем масового обслуговування
- •2.1. Загальна характеристика систем масового обслуговування
- •2.2. Системи масового обслуговування з відмовами
- •Імовірності станів смо:
- •Операційні характеристики смо:
- •2.3. Системи масового обслуговування з чергою
- •2.3.1. Смо з n каналами обслуговування і m місцями для чекання
- •Імовірності станів системи:
- •2.3.2. Смо з n каналами обслуговування і необмеженою чергою
- •1. Імовірності станів системи:
- •2.4. Смо з обмеженим часом чекання
- •Вхідні параметри смо:
- •Завдання для лабораторної роботи №4
- •2.5. Замкнуті системи масового обслуговування
- •2.6. Смо із взаємодопомогою між каналами
- •2.2. Система масового обслуговування з довільним розподілом часу обслуговування
- •3.1. Критерії оптимізації смо
- •3.2. Оптимізація замкнутої смо за критерієм максимуму прибутку
- •3.3. Оптимізація смо за критерієм мінімуму економічних втрат від відмов в обслуговуванні
- •Контрольні запитання
- •Відповіді до задач
- •Література
Імовірності станів смо:
p:= Smo_1(n, λ, μ)
pT = (0.311 0.374 0.225 0.09)
Операційні характеристики смо:
1. Імовірність відмови в обслуговуванні
2. Відносна і абсолютна пропускні спроможності СМО
3. Середнє число зайнятих каналів обслуговування
4. Середній час простою каналу
5. Середній час повного завантаження системи
6. Середній час неповного завантаження системи
7. Коефіцієнт завантаження системи
В середньому у СМО буде зайнято трохи більше одного каналу, інші два канали будуть простоювати. Таким чином, за рахунок простою двох каналів обслуговування досягається порівняно високий рівень обслуговування – біля 91% (q = 0,911) усіх надійшовших заявок буде обслужено.
Приклад 2.2.
Розглядається робота телефонної
станції, яка забезпечує до 120 переговорів
одночасно. Виклики на станцію надходять
в середньому через tв=1
сек. Таким чином інтенсивність вхідного
потоку викликів
викликів у хвилину. Заявка-виклик,
яка прийшла в момент, коли усі лінії
зайняті, одержує відмову. Середня
тривалість розмови
хв.
Визначимо граничні імовірності станів і основні характеристики роботи телефонної станції, як СМО з відмовами.
Розв'язання. Обчислення ймовірностей станів СМО проводимо за програмою Smo_1.
Вхідні параметри СМО
Операційні характеристики СМО:
1. Імовірність відмови в обслуговуванні
2. Відносна і абсолютна пропускні спроможності
3. Середнє число зайнятих каналів
4. Імовірність зайнятості каналу
5. Середній час простою каналу, сек.
6. Середній час повного завантаження системи, сек.
7. Середній час неповного завантаження системи, хв.
Розрахунки показують, що при усталеному режимі роботи СМО у середньому будуть зайняті біля 112 каналів обслуговування із 120, інші 8 будуть простоювати. Цією ціною досягається досить високий рівень ефективності обслуговування – понад 93% усіх надійшовших викликів будуть обслужені.
Завдання для лабораторної роботи №1
Служба замовлення таксі обладнана
телефонами для прийому замовлень
клієнтів. Якщо в момент виходу на зв’язок
якогось клієнта усі телефони зайняті,
клієнт змушений
повторити свій виклик. Інтенсивність
вхідного потоку викликів за хв дорівнює
.
Середня тривалість прийняття заявки
(тривалість обслуговування клієнта)
дорівнює
хв.
Усі потоки подій – найпростіші.
Визначити:
стаціонарний розподіл імовірностей станів СМО;
основні операційні характеристики.
Визначити, скільки телефонів повинна мати служба замовлень таксі, щоб імовірність відмови клієнту у замовленні таксі не перевищувала 0,05.
Таблиця 2.1
Вхідні дані по варіантах завдань
Номер варіанта |
|
|
|
Номер варіанта |
|
|
|
1 |
2 |
1,0 |
2,5 |
16 |
4 |
1,2 |
2,5 |
2 |
3 |
1,2 |
2,0 |
17 |
3 |
1,5 |
2,0 |
3 |
1 |
0,8 |
2,5 |
18 |
1 |
0,8 |
2,0 |
4 |
2 |
1,0 |
2,5 |
19 |
2 |
1,3 |
2,5 |
5 |
3 |
1,7 |
2,0 |
20 |
3 |
1,2 |
2,8 |
6 |
2 |
0,8 |
2,5 |
21 |
2 |
0,8 |
2,5 |
7 |
1 |
0,5 |
2,5 |
22 |
3 |
1,6 |
2,5 |
8 |
4 |
1,8 |
2,0 |
23 |
4 |
2,0 |
2,4 |
9 |
3 |
1,5 |
2,5 |
24 |
3 |
1,8 |
2,0 |
10 |
2 |
0,8 |
2,0 |
25 |
2 |
1,5 |
2,5 |
11 |
3 |
1,4 |
1,8 |
26 |
3 |
1,6 |
1,8 |
12 |
2 |
1,2 |
2,2 |
27 |
3 |
1,5 |
2,2 |
13 |
3 |
1,3 |
2,5 |
28 |
2 |
2,0 |
1,8 |
14 |
2 |
1,2 |
2,4 |
29 |
4 |
1,2 |
1,8 |
15 |
4 |
1,6 |
2,0 |
30 |
3 |
1,4 |
2,1 |