
- •2. Законы геометрической оптики
- •3. Центрированная оптическая…..
- •4. Формула оптической системы.
- •5. Тонкая линза. Построение изображений в оптических системах.
- •6.Тонкая линза. Построение изображений в оптических системах.
- •7. Когерентность временная и пространственная когерентность
- •8 Способы наблюдения интерференции света
- •9 Интерференция в тонких пленках, кольцо Ньютона
- •Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля.
- •11. Дифракция Френеля на простейших преградах (круглом отверстии, крае полуплоскости). Спираль Корню.
- •12.Дифракция Фраунгофера
- •13 Дифракционная решётка
- •14. Основные фотометрические величины ( поток лучистой энергии…….
- •17.Поляризованный свет. Плоскополяризованный свет, свет, поляризованный по кругу и эллипсу.
- •18. Получение поляризованного света. Двойное лучепреломление в кристаллах
- •19. Явление дисперсии. Опыты Ньютона. Нормальная и аномальная дисперсии. Электронная теория дисперсии
- •22. Давление света опыты Лебедева
- •23. Фотохимическое действие света. Физические основы фотографии
- •26. Гипотеза де- Бройля. Волновая функция. Уравнение Шредингера
- •27. Квантование энергии на примере частицы в бесконечно глубокой потенциальной яме
- •28 Спонтанное и вынужденное излучение. Свойства лазерного излучения .Применение лазеров
- •29. Основы спектрометрии
- •30. Ядерные силы. Атомное ядро
- •31 Ядерные реакции
- •32 Закон радиоактивного распада
- •33. Цепная реакция деления ядер. Ядерные реакторы.
- •34. Термоядерная реакция синтеза
- •35. Элементы дозиметрии
- •36. Элементарные частицы. Основы квантовой теории поля.
34. Термоядерная реакция синтеза
Ядерный синтез, т.е. слияние легких ядер в одно ядро, сопровождается, как и деление тяжелых ядер, выделением огромных количеств энергии. Поскольку для синтеза ядер необходимы высокие температуры, этот процесс называют термоядерной реакцией.
Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний 10-15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами. Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов Кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания. При таких температурах вещество существует в виде плазмы. Поскольку синтез может происходить только при очень высоких температурах, ядерные реакции синтеза и получили название термоядерных реакций.
В термоядерных реакциях выделяется огромная энергия.
Применение термоядерной реакции как практически неисчерпаемого источника энергии связано в первую очередь с перспективой освоения технологии управляемого термоядерного синтеза
35. Элементы дозиметрии
Ионизирующее излучение его взаимодействие количественно может быть оценено отношением энергии, переданной элементу облученного вещества, к массе этого элемента. Эту характеристику называют дозой излучения (поглощенной дозой излучения) D.
Единицей поглощенной дозы излучения является грей (Гр), мощность дозы излучения выражается в греях в секунду (Гр/с). Внесистемная единица дозы излучения - рад1 (1 рад = 10-2 Гр = 100 эрг/г), ее мощности - рад в секунду(рад/с).
В связи с этим вводят еще одно понятие дозы для рентгеновского и γ-излучения - экспозиционную дозу излучения X, которая является мерой ионизации воздуха рентгеновскими и γ-лучами.
За единицу экспозиционной дозы принят кулон на килограмм (Кл/кг).
Так как доза излучения пропорциональна падающему ионизирующему излучению, то между излученной и экспозиционной дозами должна быть пропорциональная зависимость:
где f - некоторый переходный коэффициент, зависящий от ряда причин и прежде всего от облучаемого вещества и энергии фотонов.
36. Элементарные частицы. Основы квантовой теории поля.
Среди наблюдаемых элементарных частиц в настоящее время стабильными (с бесконечно большим временем жизни) считаются: электрон, фотон, нейтрино(разных типов) и протон, причем в ряде моделей предполагается, что последний может быть нестабильным. Остальные частицы нестабильны и распадаются по экспоненциальному закону, так что за время t их количество убывает в e-t/t раз, при этом их время жизни t для разных частиц варьируется в очень широком диапазоне (например, у нейтрального пиона - 10-16 с, а у нейтрона — 10 мин).
Квантовая теория поля — раздел теоретической физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется всяфизика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля пока является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих ихэнергию покоя).