
- •2. Законы геометрической оптики
- •3. Центрированная оптическая…..
- •4. Формула оптической системы.
- •5. Тонкая линза. Построение изображений в оптических системах.
- •6.Тонкая линза. Построение изображений в оптических системах.
- •7. Когерентность временная и пространственная когерентность
- •8 Способы наблюдения интерференции света
- •9 Интерференция в тонких пленках, кольцо Ньютона
- •Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля.
- •11. Дифракция Френеля на простейших преградах (круглом отверстии, крае полуплоскости). Спираль Корню.
- •12.Дифракция Фраунгофера
- •13 Дифракционная решётка
- •14. Основные фотометрические величины ( поток лучистой энергии…….
- •17.Поляризованный свет. Плоскополяризованный свет, свет, поляризованный по кругу и эллипсу.
- •18. Получение поляризованного света. Двойное лучепреломление в кристаллах
- •19. Явление дисперсии. Опыты Ньютона. Нормальная и аномальная дисперсии. Электронная теория дисперсии
- •22. Давление света опыты Лебедева
- •23. Фотохимическое действие света. Физические основы фотографии
- •26. Гипотеза де- Бройля. Волновая функция. Уравнение Шредингера
- •27. Квантование энергии на примере частицы в бесконечно глубокой потенциальной яме
- •28 Спонтанное и вынужденное излучение. Свойства лазерного излучения .Применение лазеров
- •29. Основы спектрометрии
- •30. Ядерные силы. Атомное ядро
- •31 Ядерные реакции
- •32 Закон радиоактивного распада
- •33. Цепная реакция деления ядер. Ядерные реакторы.
- •34. Термоядерная реакция синтеза
- •35. Элементы дозиметрии
- •36. Элементарные частицы. Основы квантовой теории поля.
28 Спонтанное и вынужденное излучение. Свойства лазерного излучения .Применение лазеров
Вы́нужденное излуче́ние, индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней. Созданный фотон имеет ту же энергию, импульс, фазу и поляризацию, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными.
Спонтанное излучение или спонтанное испускание — процесс самопроизвольного испускания электромагнитного излучения квантовыми системами (атомами, молекулами) при их переходе из возбуждённого состояния в стабильное.
Свойства лазерного излучения
1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.
2. Лазерное излучение большой мощности имеет огромную температуру.
Связь между энергией равновесного излучения E данной частоты n и его температурой T задает закон излучения Планка. Зависимость между этими величинами имеет вид семейства кривых в координатах частота (по абсциссе) – энергия (по ординате). Каждая кривая дает распределение энергии в спектре излучения при определенной температуре. Применение лазеров.
Уникальные свойства лазерного излучения сделали квантовые генераторы незаменимым инструментом в самых разных областях науки и техники.
1. Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой). Высокая монохроматичность излучения позволяет сфокусировать луч в точку диаметром порядка микрона (за счет отсутствия дисперсии, см. КОЛЕБАНИЯ И ВОЛНЫ) и применять его для изготовления микросхем (так называемый метод лазерного скрайбирования – снятия тонкого слоя). Для обработки деталей в вакууме или в атмосфере инертного газа лазерный луч можно вводить в технологическую камеру через прозрачное окно.
29. Основы спектрометрии
Область физики и техники, разрабатывающая теорию и методы измерении спектров. В оптич. диапазоне длин волн С. обьединяет разделы прикладной спектроскопии, метрологии и теории линейных систем С. служит для обоснования выбора принципиальных схем спектр. приборов и оптимизации методов расчета.
оптическая совокупность методов и теория измерений спектров эл.-магн. излучения и изучение спектральных свойств веществ и тел в оптич. диапазоне длин волн. Измерения в С. осуществляются с помощью спектральных приборов .
30. Ядерные силы. Атомное ядро
Взаимодействие ядер между собой свидетельствует о том, что в ядрах существует особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике. Силы, удерживающие нуклоны в ядре, называются ядерными и представляют собой проявление сильного взаимодействия.
Свойства ядерных сил: 1) Короткодействующими 2) Ядерные силы обладают зарядовой независимостью 3) Ядерным силам свойственно насыщения 4) Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов 5) Ядерные силы не являются центральными, т.е. не направлены по линии, соединяющей центры взаимодействующих нуклонов, о чем свидетельствует их зависимость от ориентации спинов нуклонов.
Модели атомного ядра. В теории атомного ядра очень важную роль Играют модели, достаточно хорошо описывающие сравнительно простую математическую трактовку. К настоящему времени из-за сложного характера ядерных сил и трудности точного решения уравнений движения всех нуклонов ядра еще нет законченной теории ядра, которая бы объясняла все его свойства.
Рассмотрим две следующие модели ядра:
1) Капельная модель. В этой модели принимается, что ядро ведет себя подобно капле несжимаемой заряженной жидкости с плотностью, равной ядерной, и подчиняющейся законам квантовой механики. Таким образом, ядро рассматривается как непрерывная среда и движение отдельных нуклонов не выделено.
2) Оболочечная модель. В этой модели нуклоны считаются движущимися независимо друг от друга в усредненном центрально-симметричном поле остальных нуклонов ядра. В соответствии с этим имеются дискретные энергетические уровни, заполняемые нуклонами с учетом принципа Паули. Эти уровни группируется в оболочки, в каждой из которых может находиться определенное число нуклонов. Учитывается спин-орбитальное взаимодействие нуклонов. В ядрах. за исключением самых детских, осуществляется j-j связь.