
- •Очистные агенты
- •В. И. Зварыгин
- •Часть 1 очистные агенты
- •Глава 1
- •Коллоидные растворы
- •.Структура воды
- •1.2 Структура коллоидных растворов
- •1.2 Прочность структуры.
- •1.2 Вязкость воды
- •1.3 Стабильность бурового раствора
- •1.4 Водоотдача
- •1.5 Показатель фильтрации. Приборы для определения показателя фильтрации
- •1.9. Плотность промывочной жидкости. Приборы для определения плотности
- •1.7 Содержание абразивных частиц в буровых растворах. Прибор.
- •Глава 2 глинистые растворы. Растворы Общие сведения
- •2.1. Структурообразователи.
- •2.2. Структурирование глинистых растворов
- •Структурирование промывочной жидкости за счет диспергирования тердой фазы.
- •2.3. Ингибирующие глинистые растворы.
- •2.4 Неингибирующие глинистые растворы.
- •2.5. Активация и дезактивация глинистых частиц.
- •2.6. Технические средства для приготовления глинистых растворов
- •Глава 3 полимеры и полимерные промывочные жидкости
- •3.1. Полимеры – структурообразователи
- •Состав древесины
- •3.2Свойства и функции полимеров
- •3.3 Модифицирующие полимерполисолевые растворы
- •3.3.2. Экспериментальные исследования.
- •3.4. Зарубежные реагенты для приготовления промывочных жидкостей Основная классификация реагентов компании “бдс”:
- •3.5 Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •3.6 Полимерные растворы
- •3.7 Технические средства для приготовления полимерных растворов
- •Общая схема выбора промывочной жидкости
- •Глава4 растворы электролитов
- •4.1Истинные растворы
- •Теплота растворения электролитов
- •4.2Растворимость и скорость растворения электролитов.
- •Растворимость электролитов
- •Скорость растворения электролитов.
- •4.3 Насыщенные и перенасыщенные растворы.
- •4.4 Кристаллизация растворов электролитов
- •Использование процесса кристализация электролитов при бурении скважин
- •4.5 Растворы с конденсированной твердой фазой
- •Глава 5 эмульсионные промывочные жидкости
- •5.1.1 Гидрофильные эмульсионные растворы
- •5.1.2 Эмульсионные жидкости-виброгасители
- •5.2. Гидрофобные эмульсии
- •Параметры, характеризующие качество эибр:
- •Параметры, характеризующие качество виэр:
- •Параметры, характеризующие устойчивость эмульсии, для тиэр:
- •5.3. Технические средства для приготовления эмульсионных промывочных жидкостей
- •Техническая характеристика установки уэм-5
- •Техническая характеристика установки уэм-5
- •Глава 6 газообразные агенты
- •6.1. Общие понятия. Область применения. Достоинства
- •6.2. Бурение скважин с продувкой сжатым воздухом
- •Оптимальные концентрации пенообразующих пав в зависимости от минерализации пластовой воды
- •6.3. Технические средства для охлаждения и осушения воздуха
- •Техническая характеристика блока осушки завода Курганхиммаш
- •Результаты производственных испытаний осушающе-охлаждающего агрегата
- •6.4 Технические средства для очистки воздуха от шлама.
- •Глава 7 газожидкостные смеси.
- •7.1 Общие сведения.
- •7.2. Параметры, характеризующие свойства гжс
- •7.3 Пенообразователи. Регулирование свойств гжс
- •7.4. Технические средства получения и нагнетания газожидкостных смесей
- •Заключение
- •Часть II. Стабилизация в неустойчивых стенок скважин. Задачами второй части исследований являются:
- •Глава8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость стенок скважин.
- •Глава9. Промывочные жидкости для бурения уплотненных глинистых пород.
- •9.1. Класификация глинистых пород
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глинистых пород.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •Глава10. Промывочные жидкости для бурения неуплотненных глинистых пород.
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин .
- •11.2. Влияние технологических параметров бурения на раскрытие трещин и осложнение. Общие понятия.
- •11.3. Факторы, влияющие на осложнения горных пород.
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •Глава12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для закупорки способность трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •Глава 13 промывочные жидкости для бурения соленосных отложений
- •13.1. Соленосные отложения. Осложнения.
- •13.2 Растворение и размывание соленосных отложений.
- •Скорость растворения галита в перемешиваемом малоглинистов растворе, м/с10-7 (емкость 10л)
- •Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.3 Пластические деформации хемогенных пород.
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •13.5 Лигниноглинистые растворы
- •Заключение
- •Библиографический список к первой части
- •Часть I.Очистные агенты
- •Глава 1 Коллоидные растворы……… ………. …………………………………..3
- •Глава3Полимеры и полимерные промывочные жидкости …………………50
- •Глава 4 Растворы электролитов.…………………………………………………77
10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин .
Искусственное упрочнение неустойчивых пород в настоящее время проводят путем введения химических реагентов или приложения физических полей. Наиболее распространенные методы упрочнения пород в скважинах - битумизация, смолизация, силикатизация, цементация, термическая обработка (замораживание, обжиг), электрохимическое упрочнение.
Глинистые породы обладают весьма малыми поперечными размерами пор, и проникнуть в эти поры вяжущий материал может чаще всего в виде ионов SiO32-, Ca2+, Mg2+.
Недостатком таких растворов является слабая подвижность поливалентных ионов, вследствие чего они проникают в горную породу на небольшую глубину. Увеличить подвижность ионов Ca2+ и Mg2+ можно путем добавления в раствор электролитов NaCl или КСl. В присутствии анионов S042-, Сl- растворимость даже труднорастворимых солей существенно увеличивается. Так по исследованиям Ф.Ф. Лаптева, при увеличении анионов S042- от 0,1н до 0,5н переход в раствор ионов Са2+ увеличился в 10 раз с 0,12 до 1,18мг-экв/л.
В присутствии NaCI растворимость труднорастворимого гипса возрастает в 2,8 раза. По исследованиям O.K. Ангелопуло [16, при пропитке глинистого образца раствором КС1 в жидкости, вытекающей из конца трубки, было обнаружено высокое содержание ионов Са2+ и Мg2+. Так, при высоте образца глины 40 см было обнаружено 83.6 г/л Са2+ и 9,7 г/л Мg2+.
Таким образом ,для радикального упрочнения неуплотненных глин буровой раствор должен иметь в своем составе: полимеры и электролиты одновалентных и поливалентных металлов. Катионы поливалентных металлов способны «сшивать» глинистые частицы породы и тем самым резко повышать прочность породы. Электролиты одновалентных металлов, содержат слабогидрофильные подвижные катионы К+ и Na+, которые способны проникать на значительную глубину в неуплотненную глину и гидрофобизировать глинистые частицы. Кроме того, они содержат активные анионы Cl- , SO4-, способствующие более активной диссоциации кальциевых солей и глин, что позволяет проникать катионам двухвалентных металлов на большую глубину.
Такие полисолиевые растворы для бурения неуплотненных глин являются весьма перспективными буровыми растворами.
На возможность крепления стенок скважин в неустойчивых терригенно-солевых отложениях полисолевыми растворами указывает O.K. Ангелопуло.[15]
Главной предпосылкой для постановки наших исследований - отмечает он, - был положительный опыт применения на буровых Уральской области в 1965 г. глинистого раствора, насыщенного галитом с добавкой 10-15% комплексной калийно-магниевой соли - карналита. Иными словами, объектом теоретических и экспериментальных работ стали буровые растворы, насыщенные не только одной, но и несколькими солями щелочных и щелочно-земельных металлов и названные полисолевыми растворами.
В результате было доказано, что буровые растворы, обработанные хлоридами натрия, калия, магния и защитными органическими реагентами, обеспечивают нормальное состояние ствола скважины в соленосных породах. Причем для сохранения устойчивости терригенной части разреза может быть использован этот же полисолевой раствор. Оптимальные добавки хлорида магния и защитных коллоидов в хлоркальциевый раствор способствуют повышению устойчивости перемятых глин за счет замедления их капиллярной пропитки.
Отдавая должное эффективности ингибиторов разупрочнения типа силикатов и алюминатов натрия, вызывающих глубокие и необратимые изменения структуры кальциевых глин и повышающих их водоустойчивость, необходимо учитывать целесообразность применения полисолевых растворов [15].
Следовательно, как в природе, так и на практике литификация глинистых пород производится растворами соединений двухвалентных металлов, чаще всего кальция. Однако транспортирование этих соединений в поры глины вызывает большие сложности. Абсорбировать соединения кальция из даже сильно разбавленных цементных растворов или известкового молока глине довольно сложно вследствие значительных размеров и невысокого заряда частиц. Слабо абсорбируются глиной ионы Са2+ из растворов Са2++2НСО3- (из-за высокой их гидрофильности и наличия анионов НСОз-).
Да и перевести нерастворимые соли кальция в растворимые:
CaCO3+H2O+CO2Ca2++2HCO3-
и наоборот:
Ca2++2HCO3- CaCO3+H2O+CO2
весьма трудно.
Вследствие высокой гидрофильности (особенно при наличии в растворе ионов хлора), ионы кальция слабо абсорбируются кальциевой глиной.
В природе в высокоминерализованных водах содержание ионов кальция резко возрастает, так как ионы кальция гидрофильны и уравновешиваются в этих водах большим содержанием хлора [42.
Менее гидрофильными и более глинофильными являются ионы магния. Воды с ионами магния встречаются реже, чем с ионами кальция - это объясняется высокой их глинофильностью.
В поисках эффективных промывочных жидкостей для бурения неуплотненных глинистых пород с высокими крепящими свойствами автором работы были проведены специальные исследования. (см.раздел 3.4) и рекомендован ряд эффективных полимерполисолевых растворов.
Глава11
ПРОМЫВОЧНЫЕ ЖИДКОСТИ ДЛЯ БУРЕНИЯ МИКРОТРЕЩИНОВАТЫХ ГЛИНИСТЫХ ПОРОД.
11.1. Микротрещиноватые глинистые породы.
Осложнения при бурении
К твердым скальным глинистым породам относят сцементированные (аргиллит) или метаморфизированные (глинистый сланец) глинистые породы.
Прочность глинистых пород зависит от толщины пленки воды между глинистыми частицами. При уплотнении глины с уменьшением толщины пленки прочность быстро возрастает, порода становится твердой. При дальнейшем уплотнении глины на поздних стадиях диагенеза осадка появляются цементационные связи и соответствующее им сцепление упрочнения. Рост сцепления происходит по мере отложения цементирующего вещества на контактах минеральных зерен. Еще на ранних стадиях диагенеза проявляется клеящая способность коллоидальных пленок кремнекислоты. В результате обезвоживания эти пленки становятся все более и более жесткими и, в конечном счете, приобретают цементационный характер (Н.Я. Денисов, П.А. Ребиндер).
С усилением цементационных связей глинистая порода теряет свойства высокодисперсных систем и постепенно превращается в твердую (скальную) горную породу (аргиллит).
При погружении глинистых пород на глубину в результате высокого давления и температуры глины обезвоживаются, уплотняются, изменяют минеральный состав, возрастает прочность породы. Такие метаморфизованные глинистые породы носят название глинистых сланцев.
Как сцементированные, так и метаморфизованные глинистые породы теряют свойства высокодисперсных систем, слабо адсорбируют воду, не набухают, не размягчаются, ведут себя, как и все скальные породы.
В результате тектонических подвижек в земной коре, вследствие относительно невысокой прочности и жестких связей между минеральными зернами, многие аргиллиты (особенно на больших глубинах) пронизываются системой микротрещин. Образец (керн) такой породы, извлеченный из скважины и погруженный в воду, разваливается на отдельные куски и кусочки.
Разложение горной породы в воде на отдельные кусочки различных размеров (от пылевидных до крупных кусков) в инженерной геологии носит название размокания. Оно характерно для грубообломочных глинистых пород с малым числом пластичности, а также перемятых и дробленых скальных глинистых пород с наличием микротрещиноватости и зеркалами скольжения.
Процесс размокания аналогичен процессу диспергирования. Молекулы воды всасываются трещинами породы, толщина пленок воды между отдельными кусочками возрастает, а прочность связей между ними понижается. В процессе бурения в результате обнажения породы, насыщения трещин водой, ослабления связей между частицами, под воздействием горного давления происходит выдавливание и обрушение их в скважину;
При высоком горном давлении и большом диаметре скважины часто наблюдаются "выстрелы" кусков в скважину. Такие аргиллиты называют "стреляющими".
При бурении обрушения и осыпания стенок скважин также приводят к тяжелым последствиям: заклиниванию, прихвату и обрыву бурового снаряда, завалу скважины, кавернообразованию. Каверны в свою очередь приводят к ряду нежелательных явлений: изгибу бурильной колонны, знакопеременным нагрузкам бурильных труб, их поломкам.
Шлам, который накапливается в кавернах, является потенциальным источником прихвата бурового снаряда.