
- •Глава 1. Структурная организация и принципы функционирования белков Основные проявления жизни - результат функционирования белков
- •Аминокислоты - главные составные части белков
- •Свойства аминокислот - основа свойств белков
- •Спектроскопические свойства аминокислот
- •Химические реакции
- •Методы разделения аминокислот
- •Аминокислота, полипептид, белок
- •Свойства белков определяются свойствами аминокислот
- •Знание иэт важно для разделения белков методом электрофореза
- •Гель-электрофорез
- •Белки выполняют роль буферных систем
- •Белки в воде образуют растворы с особыми свойствами
- •В пространственой структуре белков выделяют четыре уровня организации
- •Исследование первичной структуры белков и пептидов
- •Искусственный синтез белков и пептидов
- •Пространственная структура белковой молекулы
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •Белки чувствительны к внешним воздействиям
- •Для определения количества белков используют разные подходы
- •Белки классифицируются разными способами
- •Простые белки построены только из аминокислот
- •Сложные белки содержат небелковые компоненты
- •Глава 2. Ферменты Клинико-лабораторное значение
- •Немного истории
- •В основе классификации ферментов - тип катализируемой реакции
- •Элементы химической логики
- •В основе химических реакций лежит образование и разрыв химических связей
- •У химической реакции есть скорость и порядок
- •На пути к пониманию механизма действия фермента
- •Ферменты – биологические катализаторы белковой природы
- •Методы выделения и очистки ферментов - это методы выделения и очистки белков.
- •Пример вычисления активности фермента:
- •Для работы некоторых ферментов необходимы дополнительные небелковые соединения
- •Белковая природа определяет многие свойства ферментов
- •Повышение температуры неоднозначно влияет на активность фермента
- •Ферменты характеризуются высокой специфичностью
- •Активность фермента зависит от концентрации субстратов.
- •Важной качественной характеристикой фермента является константа Михаэлиса
- •Уравнение Михаэлиса и Ментен графически – прямоугольная гипербола
- •Примеры использования данных кинетических исследований ферментов в медицине
- •Кинетика мультисубстратных реакций
- •Скорость реакции зависит от концентрации фермента
- •Химические реакции протекают медленно
- •Ферменты превосходят другие катализаторы своей молекулярной активностью. Почему?
- •Группы активного центра фермента используют обычные химические принципы катализа
- •Реакции, катализируемые ферментами – основной объект, на который направлено действие регуляторов процессов жизнедеятельности
- •Активность ферментов можно тормозить (ингибировать)
- •Ингибиторы бывают разные: обратимые и необратимые
- •Обратимые ингибиторы могут быть конкурентными и неконкурентными
- •Конкурентные ингибиторы не всегда структурно подобны субстрату.
- •Конкурентные ингибиторы не влияют на Vmax, они понижают Км.
- •Принципы конкурентного торможения находят применение в медицинской практике.
- •С мешанные неконкурентные ингибиторы
- •Кинетика смешанных неконкурентных ингибиторов
- •Неконкурентные ингибиторы не могут связаться со свободным ферментом.
- •Неконкурентных ингибиторы неактивны при низких концентрациях субстрата.
- •Торможение продуктом реакции- пример конкурентного торможения.
- •Субстрат может быть ингибитором фермента
- •Кинетика многих ферментов не подчиняется принципам кинетики Михаэлиса и Ментен
- •У аллостерических ферментов особые свойства
- •Две модели объясняют механизмы аллостерии.
- •В основе связывания субстрата - индуцированное взаимодействие.
- •Изменение конформации одной субъединицы индуцирует изменения структуры другой
- •Какая гипотеза является правильной?
- •Ферменты неравномерно распределены внутри клеток
- •Доступность субстрата или кофактора - важный элемент регуляции активности ферментов
- •Нарушение функции фермента вызывает болезнь.
- •Энзимопатии следствие ошибок в синтезе белков.
- •Исследование активности ферментов помогает врачу в диагностике болезней.
- •Некоторые примеры использования измерения активности ферментов в диагностике
- •Определение концентрации субстратов возможно при помощи ферментов.
- •Ферменты можно использовать как лекарственные препараты.
- •Рибозимы –исключение , подтверждающее правило.
- •Методы молекулярной инженерии позволяют конструировать новые ферменты
- •Глава 3. Витамины
- •Классификация витаминов
- •Нарушение баланса витаминов в организме
- •Гиповитаминозы.
- •Потребность организма человека в витаминах.
- •Причины дисбаланса витаминов в организме.
- •Межвитаминные взаимоотношения
- •Витамин в1 (Tиамин. Антиневритный витамин)
- •Витамин в2 (Рибофлавин).
- •Пантотеновая кислота (витамин в3).
- •Витамин рр (Витамин в5 , никотиновая кислота, никотинамид, ниацин). Антипеллагрический витамин.
- •Гомоцис- Серин Цистатионин α-кетобутират Цистеин
- •Фолиевая кислота (Фолацин. Витамин в9. Витамин вс).
- •Фолиевая кислота
- •Метилен-тгфк- Метилен-тгфк-
- •Биотин (витамин н).
- •Пропионил-КоА метилмалонил-КоА
- •Метилмалонил-КоА пируват пропионил-КоА оксалацетат
- •Витамин с (аскорбиновая кислота), антицинготный
- •Остаток глутаминовой кислоты Остаток γ-карбоксиглутаминовой кислоты
- •Рибосомы на мембране эндо-
- •Сигнальный пептид
- •Витаминоподобные соединения Витамин f (эссенциальные жирные кислоты)
- •Инозит (Витамин в8)
- •Карнитин
- •Липоевая кислота (витамин n)
- •Пара-Аминобензойная кислота.
- •Витамин u
- •Холин (витамин в4).
- •Ацетилхолинэстераза н2о
- •Глава 4. Введение в термодинамику Биомедицинское значение.
- •Биоэнергетика- составная часть термодинамики
- •Функции состояния системы.
- •Первый закон термодинамики утверждает энергия вселенной не исчезает
- •Второй закон термодинамики указывает на вероятность и направление процесса
- •Свободная энергия и концентрация. Стандартное состояние в биологических реакциях.
- •Изменение свободной энергии и константа равновесия.
- •Примеры вычисления констант равновесия и изменений свободной энергии
- •Сопряженные реакции лежат в основе многих химических процессов в клетке.
- •«Энергетической валютой» клетки является атф
Определение концентрации субстратов возможно при помощи ферментов.
Помимо определения с диагностической целью активности ферментов имеет значение и определение количества субстратов с помощью изолированных и очищенных препаратов ферментов. Для этого к определенному субстрату добавляют избыток фермента в оптимальных для реакции условиях. Затем полученный продукт определяют специальными методами. Преимущество такого подхода заключается в том, что в образовании конечного продукта исключено неспецифическое участие других веществ. В качестве примера можно привести
определение концентрации глюкозы. Учитывая большую схожесть всех моносахаридов (гексоз) при определении концентрации глюкозы обычными неферментативными методами разные гексозы дают одинаковые конечные продукты. Естественно это ухудшает достоверность конечных результатов. Использование фермента в реакциях превращения глюкозы основано на свойстве субстратной специфичности и исключает участие в химической реакции других сахаров. В этом случае определяется концентрация только глюкозы. Кроме высокой специфичности ферментативные методы исследования просты и удобны для проведения. Среди субстратов, концентрацию которых определяют с помощью ферментов - глюкоза, фруктоза, триацилглицерины, лактат, пируват, мочевина, этанол, уксусный альдегид, АТФ, холестерин и др.
Если фермент ковалентно «пришить» к антителу, специфически взаимодействующему с антигеном, количество которого нужно определить, то такой методический прием позволит значительно повысить чувствительность и специфичность исследования. Высокая специфичность взаимодействия антигена с антителами в этом методе дополняется высокой чувствительностью ферментативной реакции, позволяющей резко увеличить количество образующегося продукта реакции, которое пропорционально числу связавшегося исследуемого антигена.
Ферменты можно использовать как лекарственные препараты.
Ферменты все больше завоевывают признание как лекарственные препараты в лечении многих заболеваний. Их используют, прежде всего, при нарушении синтеза ферментов в организме (заместительная терапия), для растворения сгустков крови при тромбозах, при лечении воспалительных процессов и т.д. Не меньшей популярностью пользуются и ингибиторы ферментов, например, при лечении панкреатитов используют ингибиторы протеолитических ферментов.
Большой интерес представляет использование в лечебной практике иммобилизованных ферментов (от лат immobilis- неподвижный). Фермент ковалентно "пришивают" к нерастворимому в воде носителю. Такие ферменты можно использовать в лабораторной практике как реагенты для анализа. При этом в отличие от растворимых форм такие ферменты можно многократно использовать. В промышленности такие ферменты вводятся в технологические процессы получения многих соединений. Такие формы ферментов удобны в лечении поражений кожи (марлевые повязки с иммобилизованными ферментами при лечении ожогов, кожных болезней).
Рибозимы –исключение , подтверждающее правило.
Рибозимы - антисмысловые молекулы РНК, которые обладают каталитической активностью.
Р
ис
2-20. Строение рибозима.
Они функционируют, связываясь с РНК субстратом по принципу комплементарности и катализируют расщепление фосфодиэфирной связи в специфическом участке субстрата.
Пять классов рибозимов были описаны на основании их уникальных характеристик последовательностей нуклеотидов и их пространственной структуры. Они могут катализировать саморасщепление (внутримолекулярный или "in cis"катализ) и распад внешних субстратов (межмолекулярный или "in trans" катализ).
Основное исследование проведено Томасом Сечом (Thomas Cech) в 1980-ых, который показал, что РНК может участвовать во внутримолекулярном катализе автономного сплайсинга, действуя как белковый фермент. Признание ферментативной функции некоторых молекул РНК расширило определение понятия биологического катализатора
На рис 2-20 слева показана структура цис-действующего рибозима. В структуре рибозима обозначены три петли, образованные по принципу комплементарности отдельных участков одной цепи и место разрыва связи. Автономный сплайсинг происходит, если последовательность G-U-C попадает между петлями I и III, а G и U становится участком узнавания для катализа. Показанный на рисунке рибозим обладает только способностью к аутосплайсингу. Однако большинство рибозимов способны проводить in trans катализ РНК. У них можно выделить каталитический домен (петля II на рис.2-20 справа ) и распознающий участок, который представляет антисмысловую последовательность, способную специфически узнавать комплементарную последовательность на РНК субстрате и соединяться с этой последовательностью, образуя петли I и III. Рибозимы, обладающие таким механизмом действия, могут быть полезными в исследованиях в молекулярной биологии и технологии лекарственных форм
Р
ис
2-21. Этапы реакции, катализируемой
рибозимом.
По сравнению с обычными антисмысловыми РНК, рибозимы обладают способностью многократно взаимодействовать с РНК субстратами, образуя циклический процесс расщепления РНК. Другое важное отличительное свойство рибозимов - специфичность. Рибозим способен расщеплять уникальную последовательность нуклеотидов.( на рис 2-21 это последовательность Г-У-N где N – любой нуклеотид). Эти свойства рибозимов обеспечиваются распознающим участком (петли I и III). Важным в обеспечении функции рибозима является длина распознающего участка. Если это очень короткая последовательность, то скорость диссоциации субстрата от рибозима может превысить скорость расщепления связи, что может привести к низкой производительности рибозима. Однако, и стабильные гибриды проявляют низкую каталитическую активность из-за медленной диссоциации расщепленного субстрата. Таким образом, идеальной ситуацией может такая длина узнающей последовательности, которые обеспечивая расщепление тем не менее способствовала быстрой диссоциации расщепленных продуктов.