
- •1. Предмет и задачи химической технологии
- •Виды технологических процессов и основные принципы химической технологии
- •2. Основные этапы в развитии химического производства
- •3. Развитие химической промышленности в Беларуси
- •62.Полимерные материалыи их классификация
- •12.1.2 Классификация полимеров
- •63. Свойства вмс (степень полим……….)
- •67. Классиф. И основн. Свойства каучуков
- •12.3.1 Натуральный каучук
- •68. Синтетич. Каучук. Производство бутадиенстир. Каучука. Синтетический каучук
- •Производство каучуков общего назначения
- •70. Перераб. Каучуков в резинов изделия.
- •73.Поликонденс. Полимеры и пласт. На их основе……….….
- •14. Получение диоксида серы путём сжигания серы
- •Sтв. → Sжидк. → Sпар
- •11. Получение обжигового газа из колчедана
- •8. Очистка питьевой воды
- •Умягчение
- •Физические методы умягчения воды
- •Химические методы умягчения воды
- •Физико-химические методы умягчения воды
- •Механизм действия ионитов
- •4. Виды и классификация сырья химической промышленности
- •Классификация сырья
- •Рудное минеральное сырьё
- •Нерудное минеральное сырьё
- •Горючее минеральное сырьё
- •Сырьё растительного и животного происхождения
- •41. Выплавка стали в электрических печах
- •40. Выплавка стали в кислородных конвертерах.
- •19. Теоретические основы производства азотной кислоты
- •15. Соединения азота.
- •16. Производство азотводородной смеси(авс) и очистка…..
- •Химическая схема производства аммиака
- •Методы очистки авс от примесей
- •17. Химическая схема и физико – хим…… Химическая схема производства аммиака
- •Физико-химические основы синтеза аммиака
- •18. Принципиальная и технологическая схема синтеза аммиака. Принципиальная схема производства аммиака
- •19. Теоретические основы окисления аммиака методом избирательного катализа.
- •20. Теоретические основы окисления монооксида до диоксида азота. Абсорбция диоксида азота.
- •21. Комбинированный способ производства разб. Серной кислоты.
- •22. Производство концентрированной азотной кислоты прямым методом.
- •Физико-химические основы метода
- •23. Фосфорные удобрения. Фосфатное сырьё. Хим. И техн. Схемы.
- •24. Методы получ. Фосф.Кисл. И двойного суперфосфата.
- •26.Производство карбамида(мочевины.)
- •28.Теор. Основы промышл. Электролиза. Законы фарадея. Выход по току и степень испол. Энергии.
- •6.2.1 Напряжение разложения
- •Значения ηк и ηа для электродов, изготовленных из различных материалов, имеются в справочниках
- •Теория электролиза основана на законах Фарадея:
- •30. Производство аллюм. Его сплавы. Сырьё.
- •33. Произв. Оксида аллюм. Из глинозёма электрохим. Способом
- •35. Подготовка (обогащение) железной руды.
- •2) Продукты горения поднимаются вверх, нагревая кирпичную насадку.
- •46. Виды твёрдого топлива. Его состав.
- •5.Флотационное обогащение твердого сырья.
- •6. Характеристика природных вод. Виды жёсткости воды.
- •9.Значение серной кислоты. Сырье сернокислой промышленности.
- •10. Химическая и принципиальная схема получения серной кислоты контактным способом.
- •11.Получение диоксида серы обжигом колчедана. Обжиг в печи «кипящего» слоя.
- •12. Общая и специальная очистка обжигового газа.
- •13. Контактное окисление диоксида серы.
- •29. Электрол. Раствора хлорида натрия в ваннах со стальным(железн.) и ртутным катодом.
- •32. Произв. Оксида аллюм методом спекания.
- •34. Произв. Оксида аллюм. Из глинозёма электрохим. Способом
- •36. Теор. Основы доменного процесса и т.Д……………
- •4. Науглероживание железа и получение чугуна.
- •69. Стереорегулярные каучуки. Синтез изопренового каучука.
- •37.Устройство доменной печи. Доменный процесс.
- •38. Шлакообразование. Продукты доменного произв. Регрнераторы(кауперы)
- •2) Продукты горения поднимаются вверх, нагревая кирпичную насадку.
- •47. Методы высокотемпер перегенетич перераб твёрд топлива. Гидрогенизация и газифик…..
- •Гидрогенизация.
- •Газификация твёрдого топлива
- •48. Коксование каменного угля……………..
- •Химико-технологическая схема коксования угля
- •Процесс коксования угля
- •49.Устройство и работа коксовой печи
- •50. Прямой коксовый газ. Принцип схема улавлив и разд коксового газа…………..
- •2) Отделение каменноугольной смолы.
- •3) Улавливание смоляного тумана на электрофильтрах.
- •4) Улавливание аммиака и получение сульфата аммония.
- •5) Отделение нафталина.
- •6) Отделение сырого бензола.
- •51. Переработка каменноугольной смолы
- •Технология переработки смолы
- •25. Азотные удобрения.
- •Производство нитрата аммония.
- •71. Пластмассы, их свойства, классификация, основн. Свойства и области применения.
- •Классификация, состав, основные свойства и области применения пластмасс
- •72.Полимеризац. Полимеры и пласт. На их основе. Полиэтилен……..
- •Полиэтилен высокого и низкого давления
- •Полимеризация этилена высокого давления
- •Полимеризация этилена низкого давления
- •52. Нефт ь. Состав и продукты переработки нефти.
- •Физико-химические свойства и состав нефти
- •11.1.2 Продукты переработки нефти
- •53.Подготовка нефти к переработки. Перв.(прямая) гонканефти………….
- •54. Высокотемп методы перераб. Нефти Крекинг нефтепродуктов
- •Химические основы процесса
- •55.Термокаталит. Методы перераб нефти………….. Каталитический крекинг
- •56. Каталитический реформинг. Облагораж бензина. Ароматизация. Каталитический риформинг
- •Облагораживание бензина
- •11.4.2 Ароматизация
- •39. Производство стали мартеновским способом
- •42.Произв. Керамич. Изделий. Керамические изделия
- •Технологическая схема производства строительного кирпича
- •1. Алюмосиликатные огнеупоры –
- •43. Произв. Вяжущих материалов. Цемент. Производство вяжущих материалов
- •Классификация вяжущих материалов
- •Производство портландцемента
- •Измельчение клинкера
- •Технологический процесс производства стеклянных изделий
- •74.Хим. Волокна, их классификация………
- •66. Произв вмс методом поликонденс….
- •65. Механизм ступенчатой полимеризации и сополимериз…………. Полимеризация
- •12.2.1.3 Сополимеризация
63. Свойства вмс (степень полим……….)
Основную массу ВМС составляют органические вещества, используемые дл изготовления волокон, пластмасс, клеев, лаков и других материалов. Состав и физико-химические свойства Полимерами называют высокомолекулярные вещества, молекулы которых состоят из многократно повторяющихся звеньев одинакового химического состава и строения. Число звеньев в макромолекуле называют степенью полимеризации n. Например: - при полимеризации этилена полимер имеет повторяющееся звено -CH2-CH2-;- при полимеризации - бутадиена -CH2-CH=CH-CH2-.Молекулярная масса полимера М равна произведению молекулярной массы элементарного звена m на число звеньев n:M = m∙n. Для полимеров характерны многие общие свойства, которые определяются размерами молекулярной массы, физическим состоянием, пространственным строением и расположением макромолекул.
Фазовые и физические состояния полимеров К специфическим свойствам полимеров относятся их полидисперстность, особые физические свойства, свойства растворов, способность к волокнообразованию и явления релаксации. Полидисперстность. В отличие от низкомолекулярных соединений и природных полимеров синтетические полимеры не являются индивидуальными веществами, а представляют набор макромолекул одинакового строения, но разной степени полимеризации, т. е. с различной молекулярной массой. В связи с этим для них можно определить только среднюю молекулярную массу Mср. Неоднородность полимеров по молекулярной массе и степени полимеризации принято называть полидисперсностью.
Физические свойства. Характерной особенностью высокомолекулярных соединений является то, что наименьшей «частицей», участвующей в реакции или физико-химическом процессе, является не молекула, как в классической химии, а мономерное звено (при химических реакциях) или участок цепи (при физико-химических и физико-механических процессах).Полимеры плохо растворяются или практически не растворяются в различных растворителях. При этом растворение начинается с процесса набухания, т. е. проникновения молекул растворителя между макромолекулами полимера, что сопровождается значительным (в 10-15 раз) увеличением объёмом полимерной массы. Набухшие полимеры растворяются в растворителе, образуя концентрированные растворы с высокой вязкостью.Полимеры нелетучи и не обладают определённой температурой плавления, при нагревании постепенно размягчаются и переходят в вязкотекучее состояние. Для большинства полимеров характеристикой такого перехода является температура размягчения. Чем больше молекулярная масса полимера, тем выше его температура размягчения. Механические свойства полимеров также зависят от молекулярной массы. Чем больше молекулярная масса полимера и чем больше длина его макромолекул, тем больше силы межмолекулярных взаимодействий между ними, тем выше прочность полимера на разрыв.Фазовые состояния полимеров: кристаллическая и аморфная фазы В зависимости от пространственного расположения макромолекул полимера относительно друг друга полимер (или его отдельные области) может находиться в кристаллическом состоянии (кристаллическая фаза) - при упорядоченной структуре или в аморфном (аморфная фаза) при хаотичном расположении молекул.
При этом кристаллическая и аморфная фазы в полимере находятся в состоянии термодинамического равновесия: Аморфная фаза = Кристаллическая фаза - ΔQ
При повышении температуры равновесие фазового перехода смещается влево, поэтому степень кристалличности (содержание кристаллической фазы) полимера при нагревании уменьшается. Физические состояния. Для аморфных полимеров различают три физических состояния: стеклообразное, высокоэластическое и вязкотекуче. Физические состояния полимеров связаны взаимными обратимыми переходами, которые переходят в определённых интервалах температур:
Тс Тт
Стеклообразное = Высокоэластическое = Вязкотекуче,
где Тс - температура стеклования, Тт - температура текучести.
С ростом кристалличности структуры повышается прочность и жёсткость. Аморфные участки обусловливают пластичность. Полимеры с невысокой степенью кристалличности могут быть в зависимости от температуры стеклообразными, высокоэластичными и вязкотекучими. При нагревании происходит переход из одного состояния в другое с изменением механических свойств. Переход из стеклообразного в высокоэластичное состояние и обратно совершается постепенно в определённом интервале температур, который называется температурой стеклования. Аналогичный интервал температур при переходе из высокоэластичного в вязкотекучее состояние называют температурой текучести. Например, тефлон (политетрафторэтилен) на 80-85% состоит из кристаллической фазы и на 15-20% из аморфных участков. В связи с эти полимер не теряет эластичности в широком интервале температур от -296ºС до температуры разложения, а твёрдости - вплоть до начала плавления кристаллической фазы - 327ºС.
Степень кристалличности зависит от пространственного расположения заместителей в макромолекуле полимера.
Стереорегулярные и атактические полимеры
Полимеры с правильным расположением заместителей в макромолекуле в пространстве называются стереорегулярными полимерами.
Полимеры с беспорядочным расположением заместителей в макромолекуле в пространстве называются атактическими полимерами.
У стереорегулярных полимеров вследствие возможности плотного прилегания молекул степень кристалличности близка к 100%, у атактических полимеров - она значительно ниже, так как заместители соседних цепей, сближаясь, препятствуют плотной упаковке молекул.
Стереорегулярные полимеры имеют более высокую температуру размягчения и механическую прочность, чем атактические полимеры.
64. ПРОИЗВОДСТВО ВМС МЕТОДОМ ПОЛИМЕРИЗАЦИИ. МЕХАНИЗМ ЦЕПНОЙ………
Основные способы производства полимеров
По методам получения различают полимеризационные и поликонденсационные полимеры. Оба типа полимеров получают из низкомолекулярных соединений - мономеров, способных в определённых условиях реагировать друг с другом. Синтез полимеров возможен при взаимодействии низкомолекулярных соединений, содержащих не менее двух реакционоспособных функциональных групп, кратные связи, неустойчивые циклы или обычные функциональные группы. Синтез полимеров осуществляется двумя основными методами: полимеризацией и поликонденсацией.
Полимеризация. Полимеризация - это процесс образования макромолекул соединением большого числа молекул мономера без выделения побочных продуктов.Полученный полимер имеет тот же элементарный состав, что и исходный мономер, процесс необратим и протекает с выделением теплоты. Для осуществления реакции полимеризации необходимо мономеры перевести из неактивного состояния в активное состояние, для чего используют инициаторы, катализаторы, световую, тепловую или ядерную энергию. Реакции полимеризации по механизму образования макромолекул делятся на ступенчатые и цепные.
Цепная полимеризация. При цепной полимеризации, происходит соединение ненасыщенных мономеров в макромолекулу. Характерной чертой цепной полимеризации является последовательное присоединение к растущей полимерной цепи индивидуальных мономерных единиц. При присоединении каждой последующей мономерной единицы регенерируется реакционноспособный центр Ма, который, взаимодействуя с другим мономером, продолжает рост цепи:
R-Mn-Ma + M => R-Mn+1-Ma => R-Mn+2-Ma
Механизм взаимодействия растущей полимерной цепи и мономерной молекулы может включать радикальный, катионный или анионный интермедиат (промежуточный продукт). На практике широкое распространение получили процессы цепной полимеризации, протекающие в три стадии: инициирование, рост цепи, обрыв цепи.
Процесс полимеризации может протекать по радикальному или ионному механизмам.
Радикальная полимеризация. При радикальной полимеризации начало цепного процесса (инициирование) происходит под влиянием температуры, света, различных видов облучения, а также инициаторов. Инициаторы - нестойкие органические вещества, при термическом распаде сами дают радикалы, взаимодействие которых с молекулами мономера ведёт к образованию радикалов с большой молекулярной массой (рост цепи).При их действии на мономеры образуются начальные, дающие рост цепи радикалы
1) реакция распада инициатора
R-R´ → R∙ + R´;
2) реакция инициирования
CH2=CH2 + R∙ → RCH2ĊH2;
3) рост цепи
RCH2ĊH2 + CH2=CH2 = RCH2CH2CH2ĊH2
RCH2 CH2CH2ĊH2 + (CH2=CH2)n = RCH2CH2(CH2=CH2)nCH2ĊH2
4) обрыв цепи
RCH2CH2(CH2=CH2)nCH2ĊH2 + R´ = RCH2CH2(CH2=CH2)nCH2CH2R´
Рост цепи прекращается за счёт взаимодействия с другими радикалами, источником которых могут быть растворитель, молекулы мономера, а также самого полимера.
Так как обрыв цепи может произойти в любой момент времени, то конечный продукт будет состоять из макромолекул с разной длиной цепи и соответственно с различной молекулярной массой.
Ионная полимеризация. Ионная полимеризация протекает под влиянием катализаторов по цепному или ступенчатому механизму и подразделяется на катионную и анионную.
Катионная полимеризация протекает в присутствии кислот Льюиса: AlCl3, BF3, SnCl4. Взаимодействие активного каталитического комплекса с мономерами приводит к возникновению активного центра (катиона), который даёт начало росту цепи:
(BF3OH)H+ +
(CH3)2C=CH2 −−−−−→ (CH3)2C=CH3,
рост цепи:
+ +
(CH3)2C=CH3 + (CH3)2C=CH2 → (CH3)3C=CH2C(CH3)2
Обрыв цепи может произойти за счёт обрыва протона или присоединения аниона:
+ -Н+
(CH3)3C[CH2C(CH3)2]CH2C(CH3)2 → (CH3)3C[CH2C(CH3)2]CH2C(CH3)=CH2
Полимеризация по анионному механизму протекает в присутствии амидов щелочных металлов в среде жидкого аммиака и при наличии комплексных катализаторов, состоящих из металлоорганических соединений, например хлоридов металлов переменной валентности TiCl4 и TiCl3.
Механизм тот же, что и при катионной полимеризации, но инициирующей частицей являются анионы.