
- •Езжев а.С. Физические основы пластической деформации
- •6. Холодная пластическая деформация поликристалла
- •7. Деформация при повышенных температурах
- •8. Основные понятия и законы деформирования
- •9. Контактное трение
- •1. Кристаллическое строение вещества
- •1.1. Понятие кристаллической решетки. Модель кристалла
- •1.2. Типы кристаллической решетки, явление полиморфизма
- •Параметры решетки, базис, координационное число
- •В гексагональной плотноупакованной ячейке 17 атомов. На гпу ячейку
- •1.4 Плотность упаковки атомов в решетке
- •2. Индексация плоскостей и направлений
- •2.1. Индексация плоскостей
- •Индексация направлений
- •Точечные дефекты кристаллической решетки
- •3.1. Понятие кристаллической структуры, моно и поликристаллы
- •3.2. Вакансии, дислоцированные и примесные атомы
- •3.3. Движение атомов в кристалле, механизмы диффузии
- •4. Деформация монокристалла
- •Понятие напряжения и деформации
- •4.2. Механизм сдвиговой деформации
- •4.3. Напряжение сдвига атомных плоскостей
- •5. Дислокации
- •5.1. Понятие дислокации
- •Механизм перемещения дислокации
- •5.3. Плотность дислокаций
- •5.4. Краевая дислокация
- •5.5. Винтовая дислокация
- •. Смешанная дислокация
- •5.7. Контур и вектор Бюргерса
- •5.8. Размножение дислокаций при пластическом
- •6. Холодная пластическая деформация
- •6.1. Система скольжения
- •6.2. Внутрикристаллитная и межкристаллитная деформации
- •Нанокристаллические материалы
- •Полосчатость микроструктуры, текстура, остаточные напряжения
- •6.5. Упрочнение при холодной пластической деформации.
- •Деформация при повышенных температурах
- •7.1. Возврат и рекристаллизация
- •7.2. Объемная диаграмма рекристаллизации
- •Виды деформации при обработке давлением
- •8. Основные понятия и законы деформирования
- •8.1. Закон наименьшего сопротивления
- •8.2. Условие постоянства объема. Смещенный объем. Скорость деформации
- •8.3. Закон неравномерности деформаций и дополнительных
- •8.4. Закон подобия и моделирование процессов
- •9. Контактное трение
- •9.1. Понятие контактного касательного напряжения. Парность сил трения
- •9.2. Виды трения
- •9.3. Граничные условия. Законы Амонтона-Кулона и Зибеля
- •Основные факторы, влияющие на контактное трение.
- •. Активные силы контактного трения
- •Литература
5.5. Винтовая дислокация
Другим
видом линейных несовершенств является
винтовая дислокация. Представим кристалл
в виде параллелепипеда и сделаем в нем
надрез по плоскости АВСД (см. рис. 31).
Затем сдвинем правую часть кристалла по этой плоскости относительно левой части на один период решетки так, что верхняя атомная плоскость правой части совместится со второй горизонтальной атомной плоскостью левой части, вторая атомная плоскость правой части – с третьей плоскостью левой части и т.д. Очевидно, что правильная решетка сохранится во всем объеме кристалла, кроме локальной зоны вдоль линии ВС, где смещение атомов произошло на расстояние, меньшее периода решетки. Видно, что верхняя атомная плоскость, как и все параллельные ей атомные плоскости, оказалась изогнутой по винтовой линии. Отсюда локальное искажение решетки вдоль линии ВС названо винтовой дислокацией, а линия ВС – линией винтовой дислокации. В плоскостях, перпендикулярных линии ВС, область несовершенства кристаллической решетки не превышает нескольких атомных диаметров, а вдоль линии ВС эта область имеет макроскопический размер.
Дислокация может быть правой и левой, в зависимости от того, в какую сторону идет закрутка винтовой линии, если смотреть сверху (по часовой стрелке – правая винтовая дислокация, против часовой стрелки - левая). Винтовая дислокация перемещается в направлении, перпендикулярном вектору сдвига, а линия винтовой дислокации параллельна вектору сдвига. После того, как винтовая дислокация полностью пересечет кристалл, его правая часть будет полностью сдвинута относительно левой части на одно межатомное расстояние (период решетки).
. Смешанная дислокация
Дислокация не может закончиться внутри кристалла, не соединяясь с другой дислокацией. Это следует из того, что дислокация является границей зоны сдвига, а зона сдвига всегда есть замкнутая линия, причем часть этой линии может проходить по внешней поверхности кристалла. Следовательно, линия дислокации должна замыкаться внутри кристалла или оканчиваться на его поверхности.
На рис. 32 показаны частный случай, когда граница зоны сдвига (линия дислокации авcdf ) образована прямыми участками, параллельными и перпендикулярными вектору сдвига, и более общий случай криволинейной линии дислокации gh.
а g
в с
e
d
f h
Рис.32
На участках ав, cd и ef дислокация краевая, на участках вс и de – дислокация винтовая. Отдельные участки криволинейной линии дислокации имеют краевую или винтовую ориентацию, но часть этой кривой не перпендикулярна и не параллельна вектору сдвига, и на этих участках имеет место дислокация смешанной ориентации.
Н
а
рис.33 линия АВ ограничивает внутри
кристалла зону сдвига АВС. Заштрихованная
ступенька на передней грани кристалла
показывает сдвиг верхней части кристалла
относительно нижней части по
площади АВС. Вблизи точки А дислокация параллельна вектору сдвига и, следовательно, имеет винтовую ориентацию. Вблизи точки В дислокация
перпендикулярна вектору сдвига и, следовательно, имеет краевую ориентацию.
В промежутке между чисто винтовым участком вблизи точки А и чисто краевым участком вблизи точки В дислокация имеет смешанную ориентацию, промежуточную между винтовой и краевой. Под действием приложенных касательных напряжений заштрихованная зона сдвига расширяется. Участок дислокации с чисто краевой ориентацией вблизи точки В скользит в направлении приложенной силы, а участок с чисто винтовой ориентацией вблизи точки А – перпендикулярно этому направлению. Когда вся линия смешанной дислокации выйдет на внешние грани, верхняя часть кристалла окажется сдвинутой относительно нижней на один период решетки в направлении действующих касательных напряжений.
На приведенном рисунке линия смешанной дислокации оканчивается на внешних гранях кристалла. Но она может образовывать и замкнутые плоские петли внутри кристалла. Плоская петля смешанной дислокации, как и любая дислокация, является границей зоны сдвига и отделяет область плоскости скольжения внутри нее, где сдвиг уже произошел, от области, лежащей вне петли и еще не охваченной сдвигом. Т.к. винтовая дислокация легко переходит из одной плоскости в другую, то, в общем случае и линия смешанной дислокации, и поверхность скольжения не лежат в одной плоскости.