
- •Типовые вопросы междисциплинарного экзамена по специальности 140211 «Электроснабжение»
- •Энерго- и электропитающие системы отраслевых объектов
- •Ответ: Изменение времени отключения повреждения
- •Ответ: 2. Расчет начального значения периодической составляющей тока трехфазного короткого замыкания
- •3. Расчет апериодической составляющей тока трехфазного короткого замыкания
- •Электрификация производственных процессов
- •6. Защита электродвигателей и электрических сетей до 1000 в
- •Выбор защиты электродвигателей
- •Выбор электрического двигателя к насосу
- •Проектирование и технология систем электроснабжения
- •Выбор сечения проводов и жил кабелей
- •Выбор комплектных шинопроводов
- •Требования при проектировании схем питания потребителей электроэнергии сельскохозяйственных районов
- •Эксплуатация систем электроснабжения
- •1.1 Требования пуЭк защите электродвигателей отмеждуфазных замыканий
- •1. Токовая однорелейная отсечка без выдержки времени, отстроенная от пусковых
- •2. Токовая двухрелейная отсечка без выдержки времени, отстроенная от пусковых
- •2 МВт и более должна выполняться трехрелейной с тремя трансформаторами тока.
- •3. Продольная дифференциальная токовая защита - для электродвигателей
- •1. Токовая отсечка без выдержки времени, отстроенная от пусковых токов при
- •2. Дифференциальная отсечка в двухрелейном исполнении, отстроенная от бросков
- •2 МВт, а также 2 мВт и менее, если защита по п. 1 не удовлетворяет требованиям
- •3. Продольная дифференциальная токовая защита в двухрелейном исполнении с
- •Защита воздушных и кабельных линий в сетях напряжением 3-10 кв с изолированной нейтралью
- •Токовая защита
- •Защита асинхронных и синхронных электродвигателей напряжением выше 1 кВ
- •Применение
- •Причины возникновения и виды импульсных перенапряжений
- •Причины возникновения импульсного перенапряжения.
- •Преимущества ограничителей перенапряжения по сравнению с вентильными разрядниками.
- •Область применения
- •Экономика и маркетинг электроснабжения
- •Методика проведения расчета
- •6 Исследование и эксперимент в системах электроснабжения
- •Применение
- •Последовательные регулировочные трансформаторы
- •1.1 Показатели кэ
Причины возникновения и виды импульсных перенапряжений
Всего существует 3 вида импульсных перенапряжений:
коммутационное
грозовое (его еще называют атмосферным)
электростатическое
Рассмотрим каждый вид отдельно.
1. Коммутационное перенапряжение
Коммутационные перенапряжения возникают при резком изменении установившегося режима работы электрической сети. Такое явление называют переходным процессом. Импульсы и волны при данном виде перенапряжений имеют высокую частоту: от десятков до сотен (кГц), а их значение достигает до нескольких тысяч вольт и в большей степени зависит от параметров электрической цепи (индуктивность, емкость), быстродействия коммутационных аппаратов и фазы тока во время коммутации.
Причины возникновения коммутационных перенапряжений:
отключение автоматических выключателей и других аппаратов защиты
пуск или отключение от сети мощных электродвигателей
включение и отключение от сети силовых трансформаторов
включение или отключение от сети конденсаторных батарей
Например, при отключении от электрической сети небольшого трансформатора мощностью всего 1 (кВА) может возникнуть импульсное коммутационное перенапряжение порядка 2000 (В), т.е. вся запасенная энергия в обмотках трансформатора выбрасывается в электрическую сеть, что пагубно может сказаться на работу электрооборудования.
Представьте себе какое перенапряжение возникнет при коммутации силового трансформатора мощностью 400 (кВА)?
2. Атмосферное (грозовое) перенапряжение
Атмосферные (грозовые) перенапряжения относятся к природным явлениям, вызванные грозовыми разрядами.
Грозовые разряды — это мощное импульсное перенапряжение в десятки тысяч вольт и длительностью не более 1 (мс).
По общей статистике 90% молний имеют ток разряда порядка 40-60 (кА). Чуть меньше 1% молний имеют ток разряда 100 (кА) и выше.
Существуют прямые попадания молний в электрическую сеть (воздушную линию) или в молниеприемник, и удаленные попадания молний на расстоянии до 1500 м, при котором возникают импульсные перенапряжения. Смотрите картинки ниже.
На картинках выше волна перенапряжения (импульс) подписана двумя надписями, либо 10/350, либо 8/20. Эти волны (импульсы) имеют определенную форму и длину волны.
Как видно по графику, импульс 10/350 наиболее опасен для защищаемого объекта, чем 8/20, т.к. он в десятки раз дольше воздействует на электрическую сеть.
Еще несколько слов хотел бы сказать про перераспределение энергии грозового разряда. Принято считать, что 50% от первоначального импульса перенапряжения, при условии, что у нас в доме выполнена система молниезащиты и имеется заземляющее устройство (система TN-C-S, TN-S, ТТ), отводится в землю, а остальные 50% перераспределяются равномерно между всеми проводниками электрической сети, в том числе трубами и бытовыми коммуникациями.
3. Электростатическое перенапряжение
Еще один вид, который мы рассмотрим — это электростатическое перенапряжение. Чаще всего оно возникает в сухих средах путем скапливания электростатических зарядов, которые в свою очередь создают сильное электростатическое поле. Это очень не предсказуемый вид перенапряжений.
Например, если походить по ковру в диэлектрической обуви, то мы сможем зарядиться до нескольких тысяч вольт. При касании любой проводящей конструкции (батарея, корпус компьютера) произойдет электрический разряд длительностью несколько наносекунд (нсек). Наиболее опасен данный вид перенапряжений для электронных деталей и компонентов электрических приборов и устройств.
ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» дает дополнительные определения для перенапряжения:
· импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд;
· временное перенапряжение - повышение напряжения в точке электрической сети выше 1,1Uном продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях;
· коэффициент временного перенапряжения - величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети.
Для отклонения напряжения ГОСТ 13109-97 определяет нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приемников электрической энергии соответственно 5 и 10% от номинального напряжения электрической сети.
По месту приложения напряжения различают:
· фазные перенапряжения;
· междуфазные перенапряжения;
· внутрифазные перенапряжения например, между витками катушки трансформатора, между нейтралью и землей);
· между контактами коммутационных аппаратов.
По причинам возникновения перенапряжения подразделяются на следующие:
· внешние - от разрядов молнии (атмосферные перенапряжения) и от воздействия внешних источников;
· внутренние - возникающие при резонансных явлениях, при авариях и при коммутациях элементов электрической цепи.
26. Основные причины возникновения перенапряжений в системах электроснабжения.