Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 4 Мод произв проц_кратко.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
337.92 Кб
Скачать

Изокванты и изоклины пф

Если вновь обратиться к методу аналогии, то, как и в случае модели поведения потребителя, в теории моделирования производственных процессов можно выделить понятие кривой безразличия производителя. Этому понятию может соответствовать множество наборов производственных факторов, которым соответствует одинаковое количество произведенного продукта, то есть:

Множество точек, удовлетворяющих равенству (4.1), называют изоквантой ПФ (iso – постоянный, quantity – количество). Каждая изокванта соответствует различному уровню производства продукта (y), причем изокванты, более удаленные от нулевой точки (точки бездействия) соответствуют более высоким значениям y. Изокванты также обладают теми же свойствами, что и кривые безразличия (параллельны друг другу, не пересекаются с осями абсцисс и ординат и др.) Для двухфакторной ПФ изокванта по сути будет выражать функциональную зависимость затрат капитала от затрат труда при данном уровне произведенного продукта:

Производитель, варьируя технологии, может выбирать разные сочетания факторов производства и поддерживать при этом постоянный уровень производства. Согласно изокванте, увеличение одного фактора приведет к уменьшению другого. Следовательно, должна существовать характеристика, позволяющая оценить компенсацию одного фактора другим. Такой характеристикой является предельная норма замещения (аналогично такой же характеристике в теории полезности потребителя):

, (4.2)

которая показывает, какое увеличение фактора j скомпенсирует снижение фактора i на единицу, чтобы уровень производства продукта остался прежним (замещение фактора i фактором j).

Соответственно обратное замещение (фактора j фактором i) будет характеризоваться обратной величиной: .

Согласно взаимосвязи коэффициента эластичности и предельного продукта (4.1) предельную норму замещения можно выразить как:

(4.3)

Согласно (4.1) для двухфакторной ПФ имеем:

- предельная норма замещения капитала трудом;

- предельная норма замещения труда капиталом.

Согласно (4.3) для двухфакторной модели также предельную норму замещения можно выразить через коэффициенты эластичности:

, где к – фондовооруженность.

Наряду с изоквантами важную роль в ПФ играют изоклины – множества точек экономической области, у которых предельная норма замещения i-го фактора j-м постоянна:

Используя понятие изоклины (изоклинали) можно преобразовать произвольный набор факторов (L,K) в набор (Y,MRS), то есть решением системы уравнений:

будет являться:

Однородная ПФ с постоянной предельной нормой замещения труда капиталом и степенью однородности δ=1 относится к классу линейных функций, то есть .

Таким образом, для двухфакторной ПФ каждая точка изокванты характеризуется затратами капитала и труда или предельной нормой замещения труда капиталом MRSLK и фондовооруженностью k. Если обратиться к геометрическому представлению, то MRSLK равна угловому коэффициенту касательной к данной точке изокванты, а величина k – угловому коэффициенту луча, выходящего из начала координат и проходящего через заданную точку изокванты (см. Рис. 4.2).

Рис 4.2

Н апример, в точке В значение затрат труда больше, чем в точке А, следовательно, значение MRSLK в точке В меньше, чем в точке А. Соответственно точка В будет соответствовать меньшему значению фондовооруженности, чем в точке А.

Таким образом, очевидной становится связь между изменением фондовооруженности и предельной нормой замещения труда капитала, то есть мы опять приходим к понятию эластичности, а именно эластичности замещения труда капиталом, которая показывает, насколько процентов изменится фондовооруженность труда при изменении предельной нормы замещения труда капиталом на один процент:

(4.4)

Г рафически можно также показать, что с ростом кривизны изокванты эластичность Eσ уменьшается (см. Рис. 4.3).

Рис 4.3

Отметим, что в обоих случаях в точках А и В значения MRSLK остаются одинаковыми, а значение фондовооруженности в точке А выше, чем в точке В. Отсюда вытекает еще одно важное свойство: для однородной ПФ эластичность замещения труда капиталом зависит лишь от фондовооруженности и остается постоянной вдоль лучей, выходящих из нулевой точки.

Выразим связь между MRSLK и k при постоянной эластичности Eσ. Согласно (4.4) имеем:

(4.5)

Предполагая зависимость MRSLK(k), можно записать (4.5) в виде обычного дифференциального уравнения:

(4.6)

Интегрирование (4.6) дает:

или после преобразования:

, где

Следовательно, условие постоянства эластичности замещения труда капиталом дает степенную зависимость между величинами MRSLK и k. Соответственно, случай единичной эластичности будет соответствовать линейной связи между указанными величинами:

Введение понятия постоянной эластичности замещения привело к общей форме однородной ПФ, для которой эластичность замещения факторов постоянна. Такие ПФ называют ПФ класса CES (Constant Elasticity of Substitution). Впервые функции этого класса были предложены Эрроу Кеннетом и Солоу Робертом в 1961 году. Функции этого класса предполагают, что замещение труда капиталом возможно только в некоторых пределах и не существует технологий, которые позволяли бы произвести заданное количество продукта при затратах факторов производства ниже определенных критических значений. (Геометрически это означает, что можно построить асимптоты к изокванте, и они будут соответствовать минимально возможным значениями труда и капитала. Возможен вывод математических соотношений асимптот, в данном изложении этот материал мы не будем приводить.)

Многие ПФ являются по сути частными или предельными случаями функций CES, основные характеристики которых приведены в Табл 4.1.

Табл 4.1

Тип ПФ

Eσ

δ

Кобба-Дугласа

1

1

Леонтьева

0

1

Линейная

1