
- •Оглавление
- •1. Если функция непрерывна на отрезке, то она ограничена на нем.
- •2. Теорема Вейерштрасса:
- •3. Теорема Больцано-Коши:
- •3. Степенные ряды. Первая теорема Абеля. Параметры и радиус сходимости. Равномерная сходимость степенного ряда. Непрерывность суммы. Почленная дифференцируемость. Ряд Тейлора.
- •7. Законы больших чисел и предельные теоремы: неравенство Маркова, неравенство Чебышева, теорема Чебышева, центральная предельная теорема.
- •10. Многочлены. Кольцо многочленов над кольцом с единицей. Делимость многочленов, теорема о делении с остатком. Значение и корень многочлена. Теорема Безу.
- •12. Сравнения и вычеты. Кольцо вычетов. Малая терема Ферма. Сравнения первой степени. Китайская теорема об остатках.
- •15. Алгоритмы поиска в последовательно организованных файлах. Бинарный и интерполяционный поиск. Поиск в файлах, упорядоченных по вероятности. Самоорганизующиеся файлы. Оценки трудоемкости.
- •16. Основные понятия защиты информации (субъекты, объекты, доступ, граф доступов, информационные потоки). Постановка задачи построения защищённой автоматизированной системы. Ценность информации.
- •18. Модель системы безопасности hru. Основные положения модели. Теорема об алгоритмической неразрешимости проблемы безопасности в произвольной системе.
- •1. Санкционированное получение прав доступа.
- •2. Похищение прав доступа
- •20. Модель Белла-Лападулы как основа построения систем мандатного разграничения доступа. Основные положения модели. Базовая теорема безопасности (bst).
- •Теорема bst (Basic Security Theorem).
- •21. Основные положения критериев tcsec. Фундаментальные требования компьютерной безопасности. Требования классов защиты.
- •23. Общая характеристика операционных систем (ос). Назначение и возможности систем семейств unix, Windows.
- •24. Основные механизмы безопасности средств и методы аутентификации в ос, модели разграничения доступа, организация и использование средств аудита.
- •Методы аутентификации в ос.
- •Модели разграничения доступа.
- •25. Субъекты в операционных системах (основные определения, содержимое дескрипторов процессов и потоков, переключение процессов и потоков).
- •26. Методы и средства обеспечения конфиденциальности информации в операционных системах семейства Windows nt и Linux.
- •27. Методы и средства обеспечения целостности информации в операционных системах семейства Windows nt и Linux.
- •28. Методы и средства обеспечения доступности информации в операционных системах семейства Windows nt и Linux.
- •29. Источники угроз и общие методы защиты от них в операционных системах Windows nt и Linux.
- •30. Компоненты системы защиты операционных систем семейства Windows nt и их характеристика.
- •31. Объекты в ос. Модель разграничения доступа в операционных системах семейства Windows nt.
- •Модель разграничения доступа.
- •32. Права, привилегии, суперпривилегии и вход пользователей в ос семейства Windows nt. Права учетных записей.
- •Привилегии
- •Этапы входа пользователя
- •33. Компоненты системы защиты, модель разграничения доступа и способности в операционных системах семейства Linux.
- •Способности процесса.
- •34. Вредоносное программное обеспечение. Классификация, принципы работы, способы выявления и противодействия.
- •36. Локальные вычислительные сети ieee 802.3. Методы и средства обеспечения безопасности в проводных сетях.
- •37. Беспроводные локальные сети ieee 802.11. Методы и средства обеспечения безопасности в беспроводных сетях.
- •38. Виртуальные лвс. Типы vlan. Стандарт ieee 802.1q. Формат маркированного кадра Ethernet ieee 802.1p/q. Правила продвижения пакетов vlan 802.1q.
- •39. Межсетевые экраны. Классификация межсетевых экранов. Типовое размещение межсетевого экрана в лвс. Архитектура межсетевых экранов. Политика межсетевых экранов. Понятие dmz. Трансляция ip-адресов.
- •40. Системы обнаружения атак. Классификация систем обнаружения атак. Типовая архитектура систем обнаружения атак. Методы обнаружения информационных атак в системах обнаружения атак.
- •41. Языки запросов. Языки описания данных. Языки манипулирования данными. Особенности языковых средств управления и обеспечения безопасности данных в реляционных субд.
- •42. Транзакции. Свойства acid транзакций. Управление восстановлением. Алгоритм aries. Двухфазная фиксация.
- •43. Транзакции. Свойства acid транзакций. Управление параллельностью. Блокировки. Строгий протокол двухфазной блокировки.
- •44. Технологии удалённого доступа и системы баз данных, тиражирование и синхронизация в распределённых системах баз данных.
- •Классификация демаскирующих признаков и их характеристики
- •Технические каналы утечки информации, классификация и характеристика
- •Оптические каналы утечки информации. Способы и средства противодействия наблюдению в оптическом диапазоне.
- •Канал утечки информации за счет пэмин
- •Каналы утечки акустической информации.
- •Материально-вещественные каналы утечки информации.
- •Специальные технические средства предназначенные для негласного получения информации (закладные устройства). Классификация, принципы работы, методы противодействия.
- •Задачи и принципы инженерно-технической защиты информации.
- •Способы и средства инженерной защиты и технической охраны объектов.
- •Методики оценки возможности утечки информации.
- •1. Методика оценки возможности утечки информации по оптическому каналу
- •2. Методика оценки возможности утечки информации по акустическому каналу
- •3. Методика оценки возможности утечки информации по радиоэлектронному каналу
- •4. Методика оценки возможности утечки информации по вещественному каналу
- •Методики оценки эффективности применяемых мер защиты информации.
- •Оценка защищенности информации от утечки за счет пэмин
- •Способы и средства информационного скрытия речевой информации от подслушивания. Энергетическое скрытие акустического сигнала.
- •Основные методы защиты информации техническими средствами.
- •Основные понятия криптографии. Модели шифров. Блочные и поточные шифры. Понятие криптосистемы. Ключевая система шифра. Основные требования к шифрам.
- •Системы шифрования с открытыми ключами: rsa, системы Эль-Гамаля, системы на основе «проблемы рюкзака».
- •60. Цифровая подпись. Общие положения. Цифровые подписи на основе шифросистемы с открытыми ключами стандартов гост р и dss.
- •Функции хэширования. Требования предъявляемые к функциям хэширования. Ключевые функции хэширования. Безключевые функции хэширования.
- •Проблемы и перспективы развития криптографических методов защиты. Криптосистемы на основе эллиптических кривых. Алгоритм электронной подписи на основе эллиптических кривых ecdsa.
- •63. Объекты правового регулирования при создании и эксплуатации системы информационной безопасности
- •64. Использование существующих нормативных актов для создания системы информационной безопасности. Основные положения руководящих правовых документов
- •65. Система международных и российских правовых стандартов. Стандарт bs7799
- •66. Требования Доктрины информационной безопасности рф и ее реализация в существующих системах информационной безопасности
- •67. Значение и отличительные признаки методик служебного расследования фактов нарушения информационной безопасности от расследования других правонарушений
- •69. Понятие и основные организационные мероприятия по обеспечению информационной безопасности
- •70. Политика информационной безопасности как основа организационных мероприятий. Основные требования к разработке организационных мероприятий
- •71. Контроль и моделирование как основные формы организационных действий при проверке действенности системы информационной безопасности
- •72. Разграничение прав доступа как основополагающее требование организационных мероприятий и их практическая реализация на объекте защиты
- •73. Иерархия прав и обязанностей руководителей и исполнителей при построении системы информационной безопасности, их взаимодействие
- •74. Аудит системы информационной безопасности на объекте как основание для подготовки организационных и правовых мероприятий. Его критерии, формы и методы.
- •75. Общая характеристика и этапы проведения работ по обеспечению информационной безопасности автоматизированной информационной системы
- •76. Анализ защищенности автоматизированной информационной системы
- •77. Методы оценки информационной безопасности ас
- •78. Пути повышения надежности и отказоустойчивости информационной системы.
- •79. Технология обнаружения воздействия нарушителя на работу автоматизированной информационной системы
- •80. Основные принципы формирования нормативно-методических документов по обеспечению безопасности информации организации.
- •81. Жизненный цикл автоматизированной информационной системы. Этапы жизненного цикла.
- •82. Классические модели жизненного цикла автоматизированной информационной системы. Современные концепции и модели жизненного цикла.
- •1. Классические модели жизненного цикла
- •1.2 Современные стратегии конструирования программного обеспечения
- •1.3 Быстрая разработка приложений (Rapid Application Development)
- •1.4 Быстрая разработка приложений
- •1.4 Компонентно-ориентированная модель.
- •1.5. Экстремальное программирование (xp – extreme programming)
- •83. Порядок создания автоматизированных систем в защищенном исполнении.
- •84. Типовое содержание работ по защите информации на стадиях создания автоматизированных систем в защищенном исполнении.
- •85. Разработка технического задания на создание автоматизированной системы в защищенном исполнении. Этапы и виды работ.
- •86. Структурный подход к разработке программного обеспечения автоматизированной системы. Общие понятия. Основные модели структурного подхода. Метод пошаговой детализации.
- •87. Объектно-ориентированный подход к разработке программного обеспечения автоматизированной системы. Общие понятия. Общая характеристика моделей. Общие понятия об языке uml.
- •88. Тестирование программного обеспечения. Модели тестирования белого и черного ящика. Виды испытания и их характеристика.
- •89. Разработка аппаратного обеспечения (рао) автоматизированной системы. Этапы разработки. Общая характеристика этапов.
- •Этапы разработки
- •90. Научно-исследовательская разработка для создания новых видов аппаратного обеспечения
- •91. Опытно-конструкторская разработка новых видов аппаратного обеспечения.
- •92. Подготовка производства изделия на предприятии–изготовителе.
- •93. Применение средств криптографической защиты информации при проектировании автоматизированных систем в защищенном исполнении.
- •94. Особенности построения систем электронной цифровой подписи.
- •95. Подходы к разработке систем электронных платежей. Принципы функционирования платежных систем.
- •96. Концепции хранилищ данных. Свойства хранилищ данных. Архитектуры сппр с использованием концепции хранилищ данных.
- •97. Организация хранилищ данных. Многомерная модель данных. Факты и измерения. Информационные потоки хранилищ данных. Etl-процесс.
97. Организация хранилищ данных. Многомерная модель данных. Факты и измерения. Информационные потоки хранилищ данных. Etl-процесс.
Принято разделять все данные на измерения и факты.
Измерениями называются наборы данных, необходимые для описания событий (например, города, товары, люди и т. п.).
Фактами называются данные, отражающие сущность события (например, количество проданного товара, результаты экспериментов и т. п.).
Фактические данные могут быть представлены в виде числовых или категориальных значений.
Все данные в ХД делятся на три основные категории:
детальные данные;
агрегированные данные;
метаданные.
Детальными являются данные, переносимые непосредственно из ОИД. Они соответствуют элементарным событиям, фиксируемым OLTP-системами (например, продажи, эксперименты и др.).
На основании детальных данных могут быть получены агрегированные (обобщенные) данные. Агрегирование происходит путем суммирования числовых фактических данных по определенным измерениям.
В зависимости от возможности агрегировать данные они подразделяются на следующие типы:
аддитивные – числовые фактические данные, которые могут быть просуммированы по всем измерениям;
полуаддитивные – числовые фактические данные, которые могут быть просуммированы только по определенным измерениям;
неаддитивные – фактические данные, которые не могут быть просуммированы ни по одному измерению.
Большинство пользователей СППР работают не с детальными, а с агрегированными данными. Архитектура ХД должна предоставлять быстрый и удобный способ получать интересующую пользователя информацию.
Для этого необходимо часть агрегированных данных хранить в ХД, а не вычислять их при выполнении аналитических запросов. Очевидно, что это ведет к избыточности информации и увеличению размеров ХД.
При проектировании таких систем важно добиться оптимального соотношения между вычисляемыми и хранящимися агрегированными данными. Те данные, к которым редко обращаются пользователи, могут вычисляться в процессе выполнения аналитических запросов. Данные, которые требуются более часто, должны храниться в ХД.
Для удобства работы с ХД необходима информация о содержащихся в нем данных. Такая информация называется метаданными (данные о данных).
Метаданные описывают:
объекты предметной области, информация о которых хранится в ХД;
категории пользователей, использующих данные;
местоположение серверов, рабочих станций, ОИД, размещенные на них программные средства и распределение между ними данных;
действия, выполняемые над данными;
время выполнения разных операций над данными;
причины, повлекшие выполнение над данными тех или иных операций.
Так как метаданные играют важную роль в процессе работы с ХД, то к ним должен быть обеспечен удобный доступ. Для этого они сохраняются в репозитории метаданных с удобным для пользователя интерфейсом.
ОИД – Оперативный источник данных, СППР - система поддержки принятия решений.
Данные, поступающие из ОИД в ХД, перемещаемые внутри ХД и поступающие из ХД к аналитикам, образуют следующие информационные потоки:
входной поток – образуется данными, копируемыми из ОИД в ХД;
поток обобщения – образуется агрегированием детальных данных и их сохранением в ХД;
архивный поток – образуется перемещением детальных данных, количество обращений к которым снизилось;
поток метаданных – образуется переносом информации о данных в репозиторий данных;
выходной поток – образуется данными, извлекаемыми пользователями;
обратный поток – образуется очищенными данными, записываемыми обратно в ОИД.
Самый мощный из информационных потоков – входной – связан с переносом данных из ОИД.
Процесс переноса включает в себя следующие этапы:
извлечения;
преобразования;
загрузки.
Процесс переноса называют ETL-процессом (Е – extraction, Т – transformation, L – loading: извлечение, преобразование и загрузка, соответственно).
Традиционно ETL-системы использовались для переноса информации из устаревших версий информационных систем в новые. В настоящее время ETL-процесс находит все большее применение для переноса данных из ОИД в ХД и ВД.
ОИД – Оперативный источник данных, СППР - система поддержки принятия решений, ХД – хранилище данных.
Чтобы начать ETL-процесс, необходимо извлечь данные из одного или нескольких источников и подготовить их к этапу преобразования. Можно выделить два способа извлечения данных:
Извлечение данных вспомогательными программными средствами непосредственно из структур хранения информации (файлов, электронных таблиц, БД и т. п). Достоинствами такого способа извлечения данных являются:
отсутствие необходимости расширять OLTP-систему (это особенно важно, если ее структура закрыта);
данные могут извлекаться с учетом потребностей процесса переноса.
Выгрузка данных средствами OLTP-систем в промежуточные структуры. Достоинствами такого подхода являются:
возможность использовать средства OLTP-систем, адаптированные к структурам данных;
средства выгрузки изменяются вместе с изменениями OLTP-систем и ОИД;
возможность выполнения первого шага преобразования данных за счет определенного формата промежуточной структуры хранения данных.
После того как сбор данных завершен, необходимо преобразовать их для размещения на новом месте. На этом этапе выполняются следующие процедуры:
обобщение данных (aggregation) – перед загрузкой данные обобщаются. Процедура обобщения заменяет многочисленные детальные данные относительно небольшим числом агрегированных данных.
перевод значений (value translation) – в ОИД данные часто хранятся в закодированном виде для того, чтобы сократить избыточность данных и память для их хранения.
создание полей (field derivation) – при создании полей для конечных пользователей создается и новая информация.
очистка данных (cleaning) – направлена на выявление и удаление ошибок и несоответствий в данных с целью улучшения их качества.
После того как данные преобразованы для размещения в ХД, осуществляется этап их загрузки. При загрузке выполняется запись преобразованных детальных и агрегированных данных. Кроме того, при записи новых детальных данных часть старых данных может переноситься в архив.
Измерение (dimension) – это способ ранжирования данных, используемый для разделения агрегированных мер на составляющие их части.
Множественность измерений предполагает представление данных в виде многомерной модели.
По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) – это множественная перспектива, состоящая из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных.
Каждое измерение может быть представлено в виде иерархической структуры.
На пересечениях осей измерений располагаются данные, количественно характеризующие анализируемые факты, – меры (measures).
Мера – это численное значение, выражающие определенный аспект эффективности деятельности организации. Информация, представляемая этим значением, используется для принятия решения или оценки эффективности работы организации. Меры также называют фактическими значениями, или просто фактами.
Таким образом, многомерную модель данных можно представить как гиперкуб. Ребрами такого гиперкуба являются измерения, а ячейками – меры.