Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6634_УМК_Генералова_11-12_ЕНД_3,5.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.16 Mб
Скачать

Перестановки с повторениями

Если среди n элементов есть n1 элементов одного вида, n2 элементов другого вида и т.д., то число перестановок с повторениями

где

Пример.

Сколько различных перестановок букв можно сделать в слове «математика»?

Решение:

Сочетания с повторениями

Число сочетаний с повторениями из n различных элементов по m элементов равно числу сочетаний без повторений из (n+m-1) различных элементов по m элементов:

Пример.

Найти число сочетаний с повторениями из четырех элементов a, b, c, d по 3 элемента.

Решение:

Искомое число будет

Бином Ньютона

Для произвольного положительного целого числа n справедлива следующая формула:

.

Это бином Ньютона. Коэффициенты называются биномиальными коэффициентами.

При n = 2 получим формулу ;

При n = 3 получим формулу .

Пример. Определить разложение при n=4.

Решение:

.

Биномиальные коэффициенты обладают рядом свойств:

  1. ;

  2. ;

  3. ;

  4. .

Рассмотрим следующий треугольник:

………………………….

Строка под номером n содержит биномиальные коэффициенты разложения . Воспользовавшись свойством , можно заметить, что каждый внутренний элемент треугольника равен сумме двух элементов, расположенных над ним, а боковые элементы треугольника – единицы:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

……………………….

Это треугольник Паскаля. Он позволяет быстро найти значения биномиальных коэффициентов.

Решение примеров рекомендуется выполнять в среде табличного процессора MS Excel. При этом надо учитывать некоторую терминологическую путаницу.

В русскоязычной литературе перестановки, составленные из n различных элементов выбором по m элементов, которые отличаются либо составом элементов, либо их порядком, обычно называют размещениями, а под перестановками понимают всю совокупность комбинаций, состоящих из одних и тех же n различных элементов и отличающихся только порядком их расположения. В этом смысле число всех возможных перестановок для множества из n различных элементов считается по формуле факториала Pn = n! или в Excel «=ФАКТР(N)» (см. рис. № 1)

Рис. 1

В Excel считать «перестановки», т.е. размещения, очень удобно, не нужно даже вычислять факториалы (см. рис. №2 и №3): «=ПЕРЕСТ(N;K)». Вместо N и K задаются целые положительные числа, N≥K.

Рис. 2

Рис. 3

Например, если ввести «=ПЕРЕСТ(3;2)», получим 6. Это 6 комбинации: (1,2), (2,1), (1,3), (3,1), (2,3), (3,2).

А вот встроенная функция «=ЧИСЛКОМБ(N;K)» выдает комбинаторную формулу, называемую у нас «Число сочетаний». В русскоязычной литературе так именуют перестановки, составленные из n различных элементов выбором по m элементов, которые отличаются только составом элементов, а порядок их выбора безразличен (см. рис, №4)

Рис. 4

При использовании встроенных функций пользуйтесь «Справкой по этой функции». Например: