- •Часть I
- •Часть I
- •Введение
- •Достоинства и роль электрической энергии
- •Источники электрической энергии
- •Годовая выработка электроэнергии стремительно росла в основном за счет ввода новых и расширения старых тепловых и гидравлических электростанций.
- •Становление и начальное развитие электротехники
- •2. Электрическое поле
- •Основные свойства и характеристики электрического поля
- •Проводники и диэлектрики в электрическом поле.
- •Электрическая емкость. Конденсаторы
- •Примеры решения задач
- •3. Электрические цепи
- •Понятие об электрической цепи и ее элементах. Условные обозначения на схемах
- •3.2 Основы расчета электрических цепей постоянного тока
- •3.3 Режимы работы электрических цепей
- •Характерные особенности последовательного соединения резисторов и источников
- •Характерные особенности параллельного соединения резисторов и источников
- •Метод свертывания схем. Смешанное соединение источников электрической энергии
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •Плавкие предохранители
- •Выбор сечения проводов по условиям нагрева и потери напряжения
- •Примеры решения задач
- •4. Электромагнетизм
- •Основные свойства и характеристики магнитного поля.
- •Индуктивность
- •Магнитные свойства веществ
- •Магнитные цепи
- •Электромагнитные силы. Энергия магнитного поля
- •При других значениях угла α электромагнитную силу определяют по формуле
- •Электромагнитная индукция.
- •Примеры решения задач
- •5. Однофазные электрические цепи переменного тока
- •Векторные диаграммы, их обоснование. Активное, индуктивное и емкостное сопротивления в цепи переменного тока. Сдвиг фаз между током и напряжением.
- •Последовательное соединение (неразветвленная цепь)
- •Треугольники сопротивлений, мощностей
- •Разветвленная цепь с активными и реактивными элементами
- •Резонанс токов и напряжений в цепях переменного тока
- •Признаки резонансов токов:
- •Коэффициент мощности, его значение и способы повышения
- •6. Трехфазные электрические цепи
- •Цель создания и сущность трехфазной системы
- •Понятие об устройстве, принципе работы трехфазного генератора, способах соединения его обмоток, линейном и фазном напряжении
- •Способы соединения обмоток генератора Соединение звездой
- •Расчет трехфазных симметричных цепей при соединении обмоток генератора звездой и треугольником. Фазные и линейные токи
- •Несимметричные трехфазные цепи. Четырехпроводная система, роль нулевого провода
- •Понятие об аварийных режимах
- •Примеры решения задач
- •Решение
- •Решение
- •7. Электрические измерения и приборы
- •Понятие о погрешности измерений, классах точности, классификации электроизмерительных приборов
- •Общее устройство механизмов и узлов электроизмерительных приборов
- •Условные обозначения на шкалах
- •Измерительные преобразователи
- •Измерение тока и напряжения. Расширение пределов измерений
- •7.6 Измерение мощности и энергии. Схемы включения приборов
- •7.7 Измерение сопротивлений различными методами
- •Примеры решения задач
- •Решение
- •Решение
- •8. Трансформаторы
- •8.1 Назначение, принцип действия и устройство трансформатора
- •Режимы работы трансформатора
- •Величина δ u % зависит не только от величины тока нагрузки, но и от характера нагрузки, т.Е. От cos φ2.
- •Номинальные параметры трансформатора
- •Номинальное вторичное напряжение – напряжение на зажимах вторичной обмотки при холостом ходе трансформатора и при номинальном напряжении на зажимах первичной обмотки.
- •Потери энергии и кпд трансформатора
- •Типы трансформаторов и их применение
- •Применяют в линиях электропередачи.
- •Примеры решения задач
- •Определить: активную мощность, потребляемую трансформатором из сети р1, суммарные потери р, первичный i1 и вторичный i2 токи.
- •9. Электрические машины переменного тока
- •Получение вращающегося магнитного поля, частота его вращения
- •Асинхронный двигатель и его устройство
- •Устройство фазной обмотки ротора аналогично устройству обмотки статора, соединена обычно звездой, начала выведены и соединены с контактными кольцами (рис. 9.4).
- •Рабочие характеристики асинхронного двигателя
- •Пуск в ход
- •Регулирование частоты вращения ротора. Реверсирование
- •Потери и кпд
- •Понятие о синхронном двигателе
- •Примеры решения задач
- •10. Электрические машины постоянного тока
- •Назначение машин постоянного тока, их типы
- •Устройство машин постоянного тока
- •Эдс в обмотке якоря, момент на валу
- •Реакция якоря. Принцип обратимости. Коммутация
- •Потери и кпд электродвигателей постоянного тока
- •Типы электродвигателей постоянного тока, их характеристики
- •Пуск в ход двигателей постоянного тока
- •Регулирование скорости вращения
- •Электрогенераторы постоянного тока, их характеристики
- •Генератор независимого возбуждения.
- •Генератор с самовозбуждением:
- •Примеры решения задач
- •11. Основы электропривода
- •Понятие об электроприводе
- •Механические характеристики нагрузочных устройств
- •Выбор электродвигателя по механическим характеристикам Необходимо проверить соответствие друг другу их механических характеристик, обеспечивающих устойчивую работу электропривода.
- •Конструктивные типы электродвигателей. Нагревание и охлаждение электрожвигателей
- •Н агревание и охлаждение электродвигателей зависит от свойств изоляционных материалов, которые разделяются по нагревостойкости на классы а, e, в, г, н, с.
- •Режимы работы электродвигателей. Выбор мощности
- •Аппаратура управления электродвигателями
- •Примеры решения задач
- •12. Электрические и магнитные элементы системы автоматики
- •Общие сведения об элементах и системах автоматики
- •Общие сведения об измерительных параметрических преобразователях
- •Генераторные преобразователи
- •Общие сведения об исполнительных устройствах
- •Общие сведения об электромеханических промежуточных элементах автоматики
- •Общие сведения о ферромагнитных элементах автоматики
- •Общие сведения об импульсных ферромагнитных элементах
- •13. Передача и распределение электрической энергии
- •Схемы электроснабжения
- •Элементы устройства электрических сетей
- •Выбор проводов и кабелей
- •Некоторые вопросы эксплуатации электрических установок
- •Примеры решения задач
Режимы работы трансформатора
Режим холостого хода трансформатора – это такой режим его работы, при котором цепь вторичной обмотки разомкнута выключателем В2 (I2 = 0), а к первичной обмотке подведено номинальное напряжение Uном
(выключатель
В1 замкнут) (рис. 8.5).
Рис. 8.5
На зажимах вторичной обмотки напряжение равно номинальному U2 x = U2 ном.
Основной магнитный поток Ф в сердечнике создается намагничивающей силой IхN1 первичной обмотки, ток которой в этом случае называют током холостого хода (I1 = Ix).
Ваттметр, включенный в цепь первичной обмотки, показывает активную мощность трансформатора при холостом ходе (Рх), т.е. мощность потерь в магнитопроводе при номинальном напряжении. Отметим, что Р1 = Рх, Р2 = 0, т.к. нагрузка отключена, но ток
I2 = 0, а I1 = Iх по сравнению с номинальным током очень мал (в среднем 5,5%), поэтому электрические потери можно не учитывать и считать, что в режиме холостого хода Р1 = Рх = Рм, где Рм – мощность магнитных потерь.
Рабочий режим. В рабочем режиме (рис. 8.5) выключатели В1 и В2 замкнуты, первичная обмотка трансформатора включена в сеть под напряжение (обычно U1 = = U1 ном), а в цепи вторичной обмотки – нагрузка Zн. В обеих обмотках имеются токи (I1 – первичный, I2 – вторичный), по значению близкие к номинальным.
При неизменном значении первичного напряжения с ростом нагрузки трансформатора (вторичной мощности Р2) будут увеличиваться как вторичный, так и первичный токи трансформатора, будут увеличиваться и падения напряжения в его обмотках, а напряжение на зажимах вторичной обмотки будет уменьшаться.
Если обозначить U2 напряжение на зажимах вторичной обмотки трансформатора при нагрузке, а U2х – при холостом ходе, то величина
Δ U % =
ּ
100
%
называется процентным изменением напряжения трансформатора.
Величина δ u % зависит не только от величины тока нагрузки, но и от характера нагрузки, т.Е. От cos φ2.
Процентное изменение напряжения, определенное при номинальном токе, и cos φ2 = 1 в современных распределительных трансформаторах незначительно, порядка 2 – 3 %.
Режим короткого замыкания.
Первичная обмотка включена под некоторое напряжение U1, а вторичная обмотка замкнута на себя (U2 = 0).
В этом режиме (рис. 8.5) выключатель В2 замкнут, а движок нагрузочного элемента находится в крайнем левом положении (Zн = 0). Короткое замыкание может случиться во время эксплуатации трансформатора, тогда первичное напряжение равно номинальному или близко к нему. В этом случае в обеих обмотках токи резко увеличиваются в 10 – 20 раз и более против номинальных, потому что сопротивления обмоток невелики. Такой режим очень опасен для трансформатора, т.к. возможны чрезмерное повышение температуры обмоток и большие механические усилия между токоведущими элементами. Поэтому при создании трансформатора обеспечивают достаточную механическую и термическую прочность, а в схеме его предусматривают противоаварийную защиту, способную отключить трансформатор от сети за время менее одной секунды.
