
- •1.Принцип построения схем электрической системы :
- •2.Системообразующие и распределительные сети . Передаваемая мощность и длинна линии
- •4.Основные требования к схеме электрической сети . Типы конфигурации электрической сети
- •5.Схемы присоединения к сети электростанций . Требования предъявляемые к Схемам электростанций :
- •10.Схеы внешнего и внутреннего электроснабжения промышленных предприятий и городов :
- •11.Нагрев проводников эл.Током . Выбор и проверка проводов и кабелей по условию довустимого нагрева
- •12.Виды защитных апаратов в электрических сетях . Выбор апаратов защищающих сеть от перегрева
- •13.Определение сечений провод и кбелей по допустимой потери напряжения
- •14.Определение сечений провод и кабелей по экономической плотности тока
- •15.Расчет линий трехфазного тока с нагрузкой на конце по потери напржения . Продольная и поперечная составляющая потери напряжения
- •16.Определение наибольшей потери напряжения в разветвлённых сетях с несколькими нагрузками
- •17.Проверка выбраных проводов и жил кабелей по допустимой потери напряжения
- •30.Регулирования напряжения на шинах электростанций путем изменеия тока возбуждения Сг
- •31.Регулировантие напряжения с помощь трансформаторов и автотрансформаторов с рпн
- •32Линейные регулировачные трансформаторы и устройства продольного и поперечного регулирования
- •33.Выбор количества ответвлений на рпн трансформатора в разных режимах
- •34Назначение и виды компенсирующих устройств . Компенсация реактивной мощности
- •35.Батареи конденсаторов . Схема включения бк . Типы конденсаторов
- •36.Продольная компенсация с помощью конденсаторных упк . Выбор мощности конденсаторных батарей
- •37.Компенсация с помощью ск .Выбор мощности ск по условиям регулирования напряжения
- •38.Компенсация с помощью стк .Примеры стк.
- •39.Уменьшение индуктивного сопротивления лэп .Воздушные лэп с расщепленными фазами .
37.Компенсация с помощью ск .Выбор мощности ск по условиям регулирования напряжения
Синхронным компенсатором называется синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу.
Синхронные двигатели благодаря возбуждению постоянным током они могут работать с cos = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.
Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность
В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют такжегенераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.
Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.
Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу.
Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска.
В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метод самосинхронизации.
Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели, Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.
Номинальная полная мощность синхронного компенсатора соответствует его работе с перевозбуждением.
Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме.
В большинстве случаев в недовозбужденном режиме требуются меньшие мощности, чем в перевозбужденном, но в некоторых случаях необходима большая мощность. Этого можно достигнуть увеличением зазора, однако это приводит к удорожанию машины, и поэтому в последнее время ставится вопрос об использовании режима с отрицательным током возбуждения. Поскольку синхронный компенсатор по активной мощности загружен только потерями, то, согласно он может работать устойчиво также с небольшим отрицательным возбуждением.
В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.
Рис. 10-8. Электропередача с синхронным компенсатором на шинах НН и ее схемы замещения.
Мощность СК и конденсаторов подсчитывают по одним и тем же формулам, но с учетом того обстоятельства, что формулы, определяющие мощность компенсирующей установки в режиме потребления реактивной мощности, для конденсаторов не имеют смысла. Расчет ведут для максимального и минимального режимов нагрузки электропередачи, причем в преобладающем числе случаев заданным является напряжение на шинах питающей подстанции. Искомым напряжением обычно является напряжение на шинах вторичного напряжения приемной подстанции, желательная величина которого и определяет мощность СК. Для электропередачи, изображенной на рис. 10-8, а и представленной в виде одного звена с суммарным сопротивлением RS + jXS ,отнесенным к расчетному
напряжению (рис. 10-8, б), связь между напряжениями в начале и в конце ее при нагрузке Р2 + jQ2 напишется в виде:
где U2ж — желательное напряжение на шинах вторичного напряжения подстанции, приведенное к расчетному напряжению; QСК— искомая мощность синхронного компенсатора.
Решая это уравнение относительно QСК, можно определить мощность СК, необходимую для поддержания на шинах напряжения U2ж при заданной нагрузке.
Однако, учитывая, что шкала мощностей СК по ГОСТ дана с очень большими промежутками, можно пользоваться более простыми формулами, например, не учитывающими поперечной составляющей падения напряжения. Получающаяся при этом погрешность ликвидируется выбором стандартной мощности СК.
Пренебрегая поперечной составляющей падения напряжения, для электропередачи, представленной в виде одного звена, будем иметь:
При отсутствии СК и неизменном напряжении U1 в начале линии напряжение на приемном конце электропередачи U2 при той же нагрузке должно удовлетворять равенству:
Приравнивая правые части уравнений (13-1) и (13-2), получаем
Разность последних двух членов в правой части этого равенства представляет собой очень небольшую величину (на порядок меньше разности первых двух членов) и при расчетах ею можно пренебречь. Принимая это упрощение, получаем выражение для мощности компенсатора:
Если U2ж и U2,— кВ, XS — Ом, то мощность компенсатора QСК — Мвар.
Разность (U2ж — U2) в выражении (13-3) представляет собой величину, на которую необходимо изменить напряжение на шинах вторичного напряжения подстанции. В режиме максимальных нагрузок эта разность положительна (U2ж > U2), что соответствует работе СК с перевозбуждением. В режиме минимальных нагрузок эта разность может быть отрицательна (U2ж < U2). что будет соответствовать работе СК с недовозбуждением.
Сопротивление XS (представляющее собой сумму индуктивных сопротивлений линий и трансформатора) и напряжения U2ж и U2 в формуле (13-3), приведены к расчетному напряжению.
Если при определении мощности СК по формуле (13-3). пользоваться не приведенными, а полученными в результате расчета электропередачи действительными величинами напряжений на шинах НН, к которым присоединен СК, то и сопротивление XS ,входящее в эту формулу, должно быть пересчитано на эти условия. В соответствии с формулами (12-10) получим:
Или
где X? S — сопротивление электропередачи, отнесенное к действительному вторичному напряжению U2Д. ; UБ — расчетное (базисное) напряжение электропередачи; kТР — коэффициент трансформации трансформатора приемной подстанции.
При определении мощности СК по формуле (13-3) предполагается, что расчет электропередачи был произведен с учетом емкости линии (рис. 13-8, б). В том случае, если емкость не была учтена, то мощность СК, подсчитанная по формуле (13-3) для максимального режима нагрузок, можно уменьшить на величину
где D Q представляет собой часть емкости приемного конца линии, перенесенной на шины вторичного напряжения трансформатора по правилу переноса нагрузок.