
- •1.Трансформаторы тока в схемах релейной защиты.
- •2. Схема мтз на постоянном оперативном токе. Расчет выдержек времени мтз.
- •3. Выбор тока срабатывания максимальной токовой защиты.
- •4. Токовая отсечка на линии с односторонним питанием.
- •5. Токовая отсечка на линии с двухсторонним питанием.
- •6. Токовая защита со ступенчатой характеристикой выдержки времени
- •7. Максимальная токовая направленная защита (принцип действия, принципиальная электрическая схема, расчет выдержек времени).
- •8. Продольная дифференциальная защита. Расчет тока небаланса в дифференциальной защите.
- •9.Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения
- •10.Поперечная дифференциальная токовая защита (принцип действия, схема, расчет и оценка защиты).
- •11. Схема и расчет максимальной токовой защиты с блокировкой минимального напряжения
- •12. Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы). Поперечная дифференциальная токовая направленная защита (дтнз)
- •Расчет уставок пдтнз
- •13. Схема соединения трансформаторов тока и обмоток реле в полную звезду. Особенности работы релейной зашиты по этой схеме.
- •14.Двухфазная двухрелейная и трехрелейная схемы соединения трансформаторов тока и обмоток реле в неполную звезду. Особенности работы релейной защиты по этой схеме.
- •15.Схемы соединения с двумя трансформаторами тока и одним реле, включенным на разность токов двух фаз. Схема соединения трансформаторов тока в треугольник, а обмоток реле - в звезду.
- •17.Токовая защита трансформаторов от многофазных кз со ступенчатой характеристикой выдержки времени.
- •18. Защита трансформаторов 6-10 / 0,4 кВ от кз на землю
- •22. Дифференциальная токовая отсечка трансформатора: схема и расчет. Общая оценка дифференциальных защит трансформаторов.
- •23.Трансформаторы напряжения в схемах релейной защиты: векторная диаграмма, погрешность.
- •24.Схемы соединения обмоток трансформаторов напряжения.
- •25.Дифференциальная защита трансформатора с реле рнт-565 (схема, расчет).
- •26.Дифференциальная защита трансформатора с торможением (схема, расчет).
- •27. Причины отклонения частоты в энергосистеме. Автоматическая частотная разгрузка: назначение, требования, расчет.
- •28.Схема устройства авр на переменном оперативном токе в установках ниже 1000 в. Схемы устройств авр в установках выше 1000 в. Авр двигателей.
- •29. Измерительные трансформаторы тока и напряжения
- •30.Потребители электрической энергии: определение, классификация по надежности, режимам работы, напряжению мощности и роду тока.
- •31.Методы проектирования осветительной сети.
- •32. Схемы внутризаводского распределения электроэнергии на стороне 10 кВ.
- •33. Высоковольтные выключатели: масляные баковые, маломасляные, воздушные, электромагнитные, элегазовые. Назначение, устройство, достоинства и недостатки, условия выбора.
- •34. Автоматические выключатели ( а.В.): назначение, основные характеристики, виды выключателей, условия выбора. Карта селективности.
- •35. Предохранители до 1 кВ: определение, основные характеристики, условия выбора.
- •36. Выбор сечения проводов и жил кабелей до и выше 1кВ.
- •37. Коммутационные аппараты напряжением до 1 кВ.
- •38. Схемы внутрицехового распределения энергии.
- •2.1.1. Магистральные схемы
- •2.1.2. Радиальная схема
- •2.1.3. Смешанные схемы
- •2.1.4. Модульная сеть
- •39. Коммутационные аппараты напряжением выше 1 кВ.
- •40. Система охлаждения трансформаторов: основные виды, назначение. Автотрансформаторы: особенности конструкций, режимы работы, преимущества и недостатки.
- •41. Основное назначение и параметры токоограничивающих и сдвоенных реакторов. Выбор реакторов.
- •42. Воздушные лэп: провода, изоляторы, линейная арматура. Виды опор.
- •43. Кабельные лэп. Кабельная канализация. Электропроводки и токопроводы.
- •44. Реактивная мощность как параметр режима эл. Системы. Продольная и поперечная компенсация реактивной мощности.
- •45. Комплектные распределительные устройства наружной и внутренней установки.
- •48. Открытые и закрытые распределительные устройства
- •50. Ктп пром. Предприятий.
- •51. Ктп специального назначения. Ктп напряжения 6-10 кВ.
- •52. Компенсация реактивной мощности в сетях напряжением до и выше 1 кВ. Компенсация реактивной мощности в сетях напряжением до 1 кВ
- •53. Цеховые тп: выбор числа и мощности цеховых трансформаторов с учётом компенсации реактивной мощности. Цеховые тп: компановка и размещение.
- •54. Схемы городских распределительных сетей напряжением 6 – 10 кВ.
- •55. Схемы эл. Соединений на стороне 6 – 10 кВ.
- •56. Кольцевые схемы
- •57. Режимы нейтрали эл. Сетей: изолир, компенсир, эффект-заземл и глухозаземлённая
- •58. Классификация полупроводниковых преобразователей
- •59. Принципы работы полупроводниковых преобразователей
- •Выходное напряжение выпрямителей
- •60. Характеристики и параметры полупроводниковых преобразователей
- •61. Однофазный мостовой неуправляемый выпрямитель
- •62. Однофазный нулевой управляемый выпрямитель
- •63. Трехфазный нулевой управляемый выпрямитель
- •64. Защита тиристорных преобразователей
- •65. Искусственная коммутация.
- •66. Регулятор переменного напряжения
- •Выходное напряжение ппн
- •67. Определение понятия эп. Функциональная схема эп. Назначение и реализация компонентов эп.
- •68. Уравнение движения эп.
- •68. Уравнение движения эп. (из тетради)
- •69. Классификация эп. Функции эп.
- •70. Механические характеристики эд. Показатели механических характеристики эд.
- •71. Уравнение электромеханической и механической характеристик дпт нв. Естественные характеристики дпт нв.
- •72. Статические характеристики ад.
- •73. Регулирование скорости ад.
- •74. Методы и показатели регулирования скорости.
- •Показатели
- •82. Типовые дефекты в строительной части и способы их устранения.
- •75. Монтаж двигателей.
- •76. Монтаж пускорегулирующих аппаратов.
- •77.Монтаж трансформаторных подстанций и ру.
- •78. Эксплуатация ад.
- •79. Ремонт конденсаторных установок.
- •80. Ремонт кабельных линий.
- •81. Ремонт трансформаторов.
- •82. Эксплуатация и ремонт трансформаторов.
- •83. Организация эксплуатации эо.
- •84. Наладочные испытания, методики их проведения, сдача объектов в эксплуатацию.
71. Уравнение электромеханической и механической характеристик дпт нв. Естественные характеристики дпт нв.
1. При выводе уравнений для статистических характеристик двигателя примем следующие допущения; реакция якоря не учитывается; момент на валу двигателя равен электромагнитному моменту. Тогда уравнения для напряжения, ЭДС якоря и электромагнитного момента будут иметь вид
где
-
полное сопротивление цепи якоря ,Ом; Ф-
магнитный поток, Вб.
к=
-
конструктивный коэффициент двигателя;
p-число
пар полюсов;N-число
активных проводников обмотки якоря; а
– число параллельных ветвей обмотки
якоря.
Из предыдущих формул-U и Е получаем формулу для электромеханической характеристики
Формулу для механической характеристики получим с использованием выражения – М
/(
2. Естественной - называется механическая характеристика двигателя, которая соответствует основной схеме включения двигателя, номинальным параметрам питающего напряжения и отсутствию в электрических цепях двигателя дополнительных элементов.
ω
4
1
0 3 2 М
Характеристики наиболее распространенных двигателей вращательного движения;
Д. Постоянного тока независимого возбуждения;
Д. Постоянного тока последовательного возбуждения;
А.Д.;
С.Д.
Жесткость
естественной характеристики зависит
от внутреннего сопротивления якорной
цепи двигателя
Внутреннее сопротивление якорной
цепи включает собственное сопротивление
якорной обмотки, сопротивление обмотки
дополнительных полюсов, компенсационной
обмотки и щеток. Соответственно перепад
скорости для естественной характеристики
72. Статические характеристики ад.
Асинхронные двигатели получили в промышленности весьма широкое применение благодаря ряду существенных преимуществ по сравнению с другими типами двигателей. Асинхронный двигатель прост и надежен в эксплуатации, так как не имеет коллектора; асинхронные двигатели дешевле и значительно легче двигателей постоянного тока.
Момент асинхронного двигателя, как любой электрической машины, пропорционален магнитному потоку и активной составляющей вторичного тока:
(3.41)
где
-
конструктивная постоянная асинхронного
двигателя;
-
угол сдвига между ЭДС и током ротора.
(3.42)
При увеличении
скольжения растет ЭДС ротора
возрастает ток ротора
Поток двигателя также не остается
неизменным, уменьшаясь при возрастании
тока из-за падения напряжения на
сопротивлениях обмотки статора. Все
это и обуславливает отсутствие
пропорциональности между током и момента
двигателя.
Для повышения начального пускового момента и снижения пускового тока применяются двигатели с короткозамкнутым ротором специальных конструкций. Роторы электродвигателей имеют две клетки, рассоложенные концентрически, или глубокие пазы с высокими и узкими стержнями. Сопротивление ротора этих двигателей в пусковой период значительно больше, чем при номинальной скорости, в следствии поверхностного эффекта, обусловленного повышенной частотой тока в роторе при больших скольжениях. Поэтому при переходе к двигателям с глубоким пазом или
двойной обмоткой ротора существенно увеличивается кратность пускового момента и снижается кратность пускового тока. Правда, в этом случае несколько уменьшаются коэффициент мощности и КПД, соответствующие номинальной нагрузке.
У двигателей с
фазным ротором начальный пусковой
момент увеличивается по мере возрастания
до известных пределов сопротивления
резистора, а пусковой ток при увеличении
сопротивления уменьшается. Начальный
пусковой момент может быть доведен до
максимального момента. С дальнейшим
ростом сопротивления роторной цепи
увеличение
уже не компенсирует уменьшения тока
ротора и пусковой момент уменьшается.
Статические характеристики АД в режиме противовключения.
Торможение противовключением (генераторный режим работы последовательно с сетью) осуществляется в том случае, когда обмотки двигателя включены для одного направления вращения, а якорь двигателя под воздействием внешнего момента или сил инерции вращается в противоположную сторону. Это может происходить, например, в приводе подъемника, когда двигатель включен на подъем, а момент, развиваемый грузом, заставляет привод вращаться в сторону спуска груза. Такой же режим получается и при переключении обмотки якоря (или обмотки возбуждения) двигателя для быстрой остановки или для изменения направления вращения на противоположное.
При торможении противовключением в цепь якоря двигателя вводится дополнительный резистор для ограничения тока.
Торможение
противовключением возможно, если
движущий момент нагрузки становится
больше момента короткого замыкания
двигателя. Нагрузка двигателя при
противовключении должна быть ограничена
допустимым током в якорной цепи.
Так же как и для двигателя параллельного возбуждения, здесь возможно торможение противовключением при изменении полярности напряжения, подводимого к якорю. В этом случае следует, изменив направление якоря, оставить без изменения направление тока в обмотке возбуждения.