
- •1.Трансформаторы тока в схемах релейной защиты.
- •2. Схема мтз на постоянном оперативном токе. Расчет выдержек времени мтз.
- •3. Выбор тока срабатывания максимальной токовой защиты.
- •4. Токовая отсечка на линии с односторонним питанием.
- •5. Токовая отсечка на линии с двухсторонним питанием.
- •6. Токовая защита со ступенчатой характеристикой выдержки времени
- •7. Максимальная токовая направленная защита (принцип действия, принципиальная электрическая схема, расчет выдержек времени).
- •8. Продольная дифференциальная защита. Расчет тока небаланса в дифференциальной защите.
- •9.Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения
- •10.Поперечная дифференциальная токовая защита (принцип действия, схема, расчет и оценка защиты).
- •11. Схема и расчет максимальной токовой защиты с блокировкой минимального напряжения
- •12. Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы). Поперечная дифференциальная токовая направленная защита (дтнз)
- •Расчет уставок пдтнз
- •13. Схема соединения трансформаторов тока и обмоток реле в полную звезду. Особенности работы релейной зашиты по этой схеме.
- •14.Двухфазная двухрелейная и трехрелейная схемы соединения трансформаторов тока и обмоток реле в неполную звезду. Особенности работы релейной защиты по этой схеме.
- •15.Схемы соединения с двумя трансформаторами тока и одним реле, включенным на разность токов двух фаз. Схема соединения трансформаторов тока в треугольник, а обмоток реле - в звезду.
- •17.Токовая защита трансформаторов от многофазных кз со ступенчатой характеристикой выдержки времени.
- •18. Защита трансформаторов 6-10 / 0,4 кВ от кз на землю
- •22. Дифференциальная токовая отсечка трансформатора: схема и расчет. Общая оценка дифференциальных защит трансформаторов.
- •23.Трансформаторы напряжения в схемах релейной защиты: векторная диаграмма, погрешность.
- •24.Схемы соединения обмоток трансформаторов напряжения.
- •25.Дифференциальная защита трансформатора с реле рнт-565 (схема, расчет).
- •26.Дифференциальная защита трансформатора с торможением (схема, расчет).
- •27. Причины отклонения частоты в энергосистеме. Автоматическая частотная разгрузка: назначение, требования, расчет.
- •28.Схема устройства авр на переменном оперативном токе в установках ниже 1000 в. Схемы устройств авр в установках выше 1000 в. Авр двигателей.
- •29. Измерительные трансформаторы тока и напряжения
- •30.Потребители электрической энергии: определение, классификация по надежности, режимам работы, напряжению мощности и роду тока.
- •31.Методы проектирования осветительной сети.
- •32. Схемы внутризаводского распределения электроэнергии на стороне 10 кВ.
- •33. Высоковольтные выключатели: масляные баковые, маломасляные, воздушные, электромагнитные, элегазовые. Назначение, устройство, достоинства и недостатки, условия выбора.
- •34. Автоматические выключатели ( а.В.): назначение, основные характеристики, виды выключателей, условия выбора. Карта селективности.
- •35. Предохранители до 1 кВ: определение, основные характеристики, условия выбора.
- •36. Выбор сечения проводов и жил кабелей до и выше 1кВ.
- •37. Коммутационные аппараты напряжением до 1 кВ.
- •38. Схемы внутрицехового распределения энергии.
- •2.1.1. Магистральные схемы
- •2.1.2. Радиальная схема
- •2.1.3. Смешанные схемы
- •2.1.4. Модульная сеть
- •39. Коммутационные аппараты напряжением выше 1 кВ.
- •40. Система охлаждения трансформаторов: основные виды, назначение. Автотрансформаторы: особенности конструкций, режимы работы, преимущества и недостатки.
- •41. Основное назначение и параметры токоограничивающих и сдвоенных реакторов. Выбор реакторов.
- •42. Воздушные лэп: провода, изоляторы, линейная арматура. Виды опор.
- •43. Кабельные лэп. Кабельная канализация. Электропроводки и токопроводы.
- •44. Реактивная мощность как параметр режима эл. Системы. Продольная и поперечная компенсация реактивной мощности.
- •45. Комплектные распределительные устройства наружной и внутренней установки.
- •48. Открытые и закрытые распределительные устройства
- •50. Ктп пром. Предприятий.
- •51. Ктп специального назначения. Ктп напряжения 6-10 кВ.
- •52. Компенсация реактивной мощности в сетях напряжением до и выше 1 кВ. Компенсация реактивной мощности в сетях напряжением до 1 кВ
- •53. Цеховые тп: выбор числа и мощности цеховых трансформаторов с учётом компенсации реактивной мощности. Цеховые тп: компановка и размещение.
- •54. Схемы городских распределительных сетей напряжением 6 – 10 кВ.
- •55. Схемы эл. Соединений на стороне 6 – 10 кВ.
- •56. Кольцевые схемы
- •57. Режимы нейтрали эл. Сетей: изолир, компенсир, эффект-заземл и глухозаземлённая
- •58. Классификация полупроводниковых преобразователей
- •59. Принципы работы полупроводниковых преобразователей
- •Выходное напряжение выпрямителей
- •60. Характеристики и параметры полупроводниковых преобразователей
- •61. Однофазный мостовой неуправляемый выпрямитель
- •62. Однофазный нулевой управляемый выпрямитель
- •63. Трехфазный нулевой управляемый выпрямитель
- •64. Защита тиристорных преобразователей
- •65. Искусственная коммутация.
- •66. Регулятор переменного напряжения
- •Выходное напряжение ппн
- •67. Определение понятия эп. Функциональная схема эп. Назначение и реализация компонентов эп.
- •68. Уравнение движения эп.
- •68. Уравнение движения эп. (из тетради)
- •69. Классификация эп. Функции эп.
- •70. Механические характеристики эд. Показатели механических характеристики эд.
- •71. Уравнение электромеханической и механической характеристик дпт нв. Естественные характеристики дпт нв.
- •72. Статические характеристики ад.
- •73. Регулирование скорости ад.
- •74. Методы и показатели регулирования скорости.
- •Показатели
- •82. Типовые дефекты в строительной части и способы их устранения.
- •75. Монтаж двигателей.
- •76. Монтаж пускорегулирующих аппаратов.
- •77.Монтаж трансформаторных подстанций и ру.
- •78. Эксплуатация ад.
- •79. Ремонт конденсаторных установок.
- •80. Ремонт кабельных линий.
- •81. Ремонт трансформаторов.
- •82. Эксплуатация и ремонт трансформаторов.
- •83. Организация эксплуатации эо.
- •84. Наладочные испытания, методики их проведения, сдача объектов в эксплуатацию.
64. Защита тиристорных преобразователей
Защита должна действовать при возникновении внутренних и внешних коротких замыканиях, перенапряжениях в сети, перегрузках по току, опрокидывании инвертора.
Требования к защите:
Быстродействие.
Чувствительность.
Простота.
Надежность.
Селективность.
Защитой от коротких замыканий и перегрузок по току обеспечивают предохранители и автоматические выключатели.
При токах от 50 – 1000 А и напряжениях от 330 – 460 В применяются автоматические выключатели серии АП, АЕ, ВА, причем они могут устанавливаться как на стороне постоянного, так и на стороне переменного тока (недостаток: низкое быстродействие (12 – 14 мс.)).
В мощных преобразователях применяются быстродействующие предохранители ПП – 57, и быстродействующие автоматические выключатели (ВАБ – 7 мс., ВАГ – до 2 мс.).
Кроме того в преобразователях от защиты от короткого замыкания может использоваться специальная токовая защита, суть которой в том, что датчики тока расположенные в силовых цепях при возникновении аварийных токов, выдают сигнал, переводящий преобразователь в режим работы с α = 90°. Следовательно:
В процессе коммутации происходит разрыв цепи ранее находящейся под током. В результате чего возникает перенапряжение способное вывести тиристор из строя.
Поэтому необходимо каждый тиристор шунтировать защитной RC – цепью (рис. 18 б).
Одним из типичных видов аварийных режимов является возникновение перенапряжений при аварийный отключениях вышестоящих трансформаторов, которые способны вывести из строя р-n-переходы полупроводниковых приборов.
Для нейтрализации этих напряжений применяются конденсаторы больших номиналов. Поскольку это, как правило, электролиты, то для их включения в цепь переменного тока используется специальная схема (рис. 18 в).
R1 ограничивает ток заряда, R2 – разрядный резистор.
Рис. 18 г – один из вариантов ограничения радиопомех.
65. Искусственная коммутация.
Импульсные преобразователи постоянного напряжения
Принципы регулирования
Импульсные преобразователи постоянного напряжения – это устройство, предназначенное для питания нагрузки постоянного напряжения отличного от напряжения источника.
Выходное напряжение импульсного преобразователя представляет собой последовательность прямоугольных импульсов.
Амплитуда импульсов близка к ЭДС источника. Выходное напряжение на нагрузке определяется средним значением импульсного напряжения. Требуемое качество выходного напряжения добивается путем включения фильтрующих элементов.
В основе преобразователей данного типа лежит ключевой режим работы мощных полупроводниковых приборов, для которых характерно малое падение напряжения на открытом p-n-переходе, что приводит к высокому КПД данных устройств. Основные элементы транзисторы, тиристоры.
Там, где применяется тиристор, неизбежно встает вопрос о его запирании в цепи постоянного тока. Для запирания используются внешние накопители электрической энергии (конденсаторы).
Коммутация тиристоров с помощью внешнего накопителя энергии называется искусственной.
Применение в качестве фильтрующих элементов сглаживающих реакторов позволяет запасать в них энергию и поддерживать за счет нее непрерывный ток нагрузки на интервале паузы. Чтобы возникнувшая при этом ЭДС индукции не выводила из строя p-n-переходы создается контур для замыкания реактивной составляющей тока с помощью обратных диодов.
Для сокращения габаритов преобразователя и индуктивности реактора необходимо максимально повышать частоту коммутации.
Регулирование среднего напряжения на нагрузке достигается за счет широтно-импульсного метода, частотно-импульсного метода и их совместного применения.
Широтно-импульсный метод регулирования (ШИР) осуществляется изменением длительности (ширины) выходных импульсов tи (рис. 3, а) при неизменном периоде их следования (Т=const, частота f=1/T=const). Среднее значение выходного напряжения преобразователя при широтно-импульсном регулировании связано с напряжением питания соотношением
где
=
tи/T
- коэффициент регулирования
(преобразования).
Принципы импульсного регулирования
а) б)
Рис. 3. ШИР (а) и ЧИР (б)
В соответствии с (1) диапазон регулирования выходного напряжения ИППН с ШИР составляет от нуля (tи = 0, = 0) до Е (tи = Т, =1).
При частотно-импульсном методе регулирования (ЧИР) изменение выходного напряжения производится за счет изменения частоты следования выходных импульсов (f=1/Т=var, рис. 3, б) при неизменной их длительности (tи=const). Регулировочные возможности преобразователя характеризуются соотношением
Выходному
напряжению, равному E,
здесь соответствует предельная
частота следования импульсов, равная
1/tи,
а нулевому выходному напряжению -
нулевая частота f
0.
Совместное использование ШИР и ЧИР (комбинированное регулирование) заключается в изменении двух параметров выходных импульсов: tи и f.