
- •1.Трансформаторы тока в схемах релейной защиты.
- •2. Схема мтз на постоянном оперативном токе. Расчет выдержек времени мтз.
- •3. Выбор тока срабатывания максимальной токовой защиты.
- •4. Токовая отсечка на линии с односторонним питанием.
- •5. Токовая отсечка на линии с двухсторонним питанием.
- •6. Токовая защита со ступенчатой характеристикой выдержки времени
- •7. Максимальная токовая направленная защита (принцип действия, принципиальная электрическая схема, расчет выдержек времени).
- •8. Продольная дифференциальная защита. Расчет тока небаланса в дифференциальной защите.
- •9.Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения
- •10.Поперечная дифференциальная токовая защита (принцип действия, схема, расчет и оценка защиты).
- •11. Схема и расчет максимальной токовой защиты с блокировкой минимального напряжения
- •12. Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы). Поперечная дифференциальная токовая направленная защита (дтнз)
- •Расчет уставок пдтнз
- •13. Схема соединения трансформаторов тока и обмоток реле в полную звезду. Особенности работы релейной зашиты по этой схеме.
- •14.Двухфазная двухрелейная и трехрелейная схемы соединения трансформаторов тока и обмоток реле в неполную звезду. Особенности работы релейной защиты по этой схеме.
- •15.Схемы соединения с двумя трансформаторами тока и одним реле, включенным на разность токов двух фаз. Схема соединения трансформаторов тока в треугольник, а обмоток реле - в звезду.
- •17.Токовая защита трансформаторов от многофазных кз со ступенчатой характеристикой выдержки времени.
- •18. Защита трансформаторов 6-10 / 0,4 кВ от кз на землю
- •22. Дифференциальная токовая отсечка трансформатора: схема и расчет. Общая оценка дифференциальных защит трансформаторов.
- •23.Трансформаторы напряжения в схемах релейной защиты: векторная диаграмма, погрешность.
- •24.Схемы соединения обмоток трансформаторов напряжения.
- •25.Дифференциальная защита трансформатора с реле рнт-565 (схема, расчет).
- •26.Дифференциальная защита трансформатора с торможением (схема, расчет).
- •27. Причины отклонения частоты в энергосистеме. Автоматическая частотная разгрузка: назначение, требования, расчет.
- •28.Схема устройства авр на переменном оперативном токе в установках ниже 1000 в. Схемы устройств авр в установках выше 1000 в. Авр двигателей.
- •29. Измерительные трансформаторы тока и напряжения
- •30.Потребители электрической энергии: определение, классификация по надежности, режимам работы, напряжению мощности и роду тока.
- •31.Методы проектирования осветительной сети.
- •32. Схемы внутризаводского распределения электроэнергии на стороне 10 кВ.
- •33. Высоковольтные выключатели: масляные баковые, маломасляные, воздушные, электромагнитные, элегазовые. Назначение, устройство, достоинства и недостатки, условия выбора.
- •34. Автоматические выключатели ( а.В.): назначение, основные характеристики, виды выключателей, условия выбора. Карта селективности.
- •35. Предохранители до 1 кВ: определение, основные характеристики, условия выбора.
- •36. Выбор сечения проводов и жил кабелей до и выше 1кВ.
- •37. Коммутационные аппараты напряжением до 1 кВ.
- •38. Схемы внутрицехового распределения энергии.
- •2.1.1. Магистральные схемы
- •2.1.2. Радиальная схема
- •2.1.3. Смешанные схемы
- •2.1.4. Модульная сеть
- •39. Коммутационные аппараты напряжением выше 1 кВ.
- •40. Система охлаждения трансформаторов: основные виды, назначение. Автотрансформаторы: особенности конструкций, режимы работы, преимущества и недостатки.
- •41. Основное назначение и параметры токоограничивающих и сдвоенных реакторов. Выбор реакторов.
- •42. Воздушные лэп: провода, изоляторы, линейная арматура. Виды опор.
- •43. Кабельные лэп. Кабельная канализация. Электропроводки и токопроводы.
- •44. Реактивная мощность как параметр режима эл. Системы. Продольная и поперечная компенсация реактивной мощности.
- •45. Комплектные распределительные устройства наружной и внутренней установки.
- •48. Открытые и закрытые распределительные устройства
- •50. Ктп пром. Предприятий.
- •51. Ктп специального назначения. Ктп напряжения 6-10 кВ.
- •52. Компенсация реактивной мощности в сетях напряжением до и выше 1 кВ. Компенсация реактивной мощности в сетях напряжением до 1 кВ
- •53. Цеховые тп: выбор числа и мощности цеховых трансформаторов с учётом компенсации реактивной мощности. Цеховые тп: компановка и размещение.
- •54. Схемы городских распределительных сетей напряжением 6 – 10 кВ.
- •55. Схемы эл. Соединений на стороне 6 – 10 кВ.
- •56. Кольцевые схемы
- •57. Режимы нейтрали эл. Сетей: изолир, компенсир, эффект-заземл и глухозаземлённая
- •58. Классификация полупроводниковых преобразователей
- •59. Принципы работы полупроводниковых преобразователей
- •Выходное напряжение выпрямителей
- •60. Характеристики и параметры полупроводниковых преобразователей
- •61. Однофазный мостовой неуправляемый выпрямитель
- •62. Однофазный нулевой управляемый выпрямитель
- •63. Трехфазный нулевой управляемый выпрямитель
- •64. Защита тиристорных преобразователей
- •65. Искусственная коммутация.
- •66. Регулятор переменного напряжения
- •Выходное напряжение ппн
- •67. Определение понятия эп. Функциональная схема эп. Назначение и реализация компонентов эп.
- •68. Уравнение движения эп.
- •68. Уравнение движения эп. (из тетради)
- •69. Классификация эп. Функции эп.
- •70. Механические характеристики эд. Показатели механических характеристики эд.
- •71. Уравнение электромеханической и механической характеристик дпт нв. Естественные характеристики дпт нв.
- •72. Статические характеристики ад.
- •73. Регулирование скорости ад.
- •74. Методы и показатели регулирования скорости.
- •Показатели
- •82. Типовые дефекты в строительной части и способы их устранения.
- •75. Монтаж двигателей.
- •76. Монтаж пускорегулирующих аппаратов.
- •77.Монтаж трансформаторных подстанций и ру.
- •78. Эксплуатация ад.
- •79. Ремонт конденсаторных установок.
- •80. Ремонт кабельных линий.
- •81. Ремонт трансформаторов.
- •82. Эксплуатация и ремонт трансформаторов.
- •83. Организация эксплуатации эо.
- •84. Наладочные испытания, методики их проведения, сдача объектов в эксплуатацию.
52. Компенсация реактивной мощности в сетях напряжением до и выше 1 кВ. Компенсация реактивной мощности в сетях напряжением до 1 кВ
Одним из основных вопросов, решаемых при проектировании и эксплуатации систем электроснабжения промышленных предприятий, является вопрос о компенсации реактивной мощности.
Компенсация реактивной мощности с одновременным улучшением качества электроэнергии непосредственно в сетях промышленных предприятий является одним из основных направлений сокращения потерь электроэнергии и повышения эффективности электроустановок предприятий.
При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать по функциональным признакам две группы промышленных сетей в зависимости от состава их нагрузок: 1-я группа - сети общего назначения; 2-я группа - сети со специфическими нелинейными, несимметричными и резкопеременными нагрузками. Решение задачи компенсации реактивной мощности для обеих групп различно.
На начальной стадии проектирования определяют наибольшие суммарные расчетные активные Рр и реактивные Qр электрические нагрузки предприятия в соответствии с расчетом электрических нагрузок в промышленных установках.
Наибольшая суммарная реактивная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств (КУ), равна
, (1)
где Кнс,В - коэффициент, учитывающий несовпадение по времени наибольших активной нагрузки энергосистемы и реактивной нагрузки промышленного предприятия.
Значения коэффициента несовпадения Кнс,В для всех объединенных энергосистем (ОЭС) принимают в зависимости от отрасли промышленности:
Нефтеперерабатывающая, текстильная ..................................................................0,95
Черная и цветная металлургия, химическая, нефтедобывающая, пищевая, строительных материалов, бумажная .....................................................................0,9
Угольная, газовая, машиностроительная и металлообрабатывающая ..................0,85
Торфоперерабатывающая, деревообрабатывающая ..............................................0.8
Прочие ......................................................................................................................0,75
Суммарную мощность КУ Qк1 определяют по балансу реактивной мощности на границе электрического раздела предприятия и энергосистемы в период наибольшей активной нагрузки энергосистемы
.
где Qэ1 - реактивная мощность передаваемая предприятию в режиме наименьшей активной нагрузки.
Для промышленных предприятий с присоединенной суммарной мощностью трансформаторов менее 750 кВ · А значение мощности КУ Qк1 задается непосредственно энергосистемой и является обязательным при выполнении проекта электроснабжения пром. предприятия.
На предприятиях со специфическими нагрузками средства КРМ должны обеспечивать надлежащие показатели качества электроэнергии у приемников электроэнергии и на границе электрического раздела предприятия и энергосистемы.
Средствами КРМ являются: в сетях общего назначения - батареи конденсаторов (низшего напряжения - НБК и высшего напряжения - ВБК) и СД; в сетях со специфическими нагрузками, дополнительно к указанным средствам, - силовые резонансные фильтры, устройства динамической и статической КРМ (прямого или косвенного действия) и специальные быстродействующие синхронные компенсаторы (ССК).
К сетям напряжением до 1 кВ на промышленных предприятиях подключается большая часть потребителей реактивной мощности. Коэффициент мощности нагрузки НН обычно не превышает 0,8. Сети напряжением 380 - 660 В электрически более удалены от источников питания, поэтому передача реактивной мощности в сеть НН требует увеличения сечений проводов и кабелей, повышения мощности силовых трансформаторов и сопровождается потерями активной и реактивной мощностей. Затраты, обусловленные перечисленными факторами, можно уменьшить или даже устранить, если осуществлять КРМ непосредственно в сети НН.
Источниками реактивной мощности в сети НН являются СД напряжением 380 - 660 и конденсаторные батареи. Выбор оптимальной мощности НБК осуществляют одновременно с выбором цеховых ТП.
Если распределительная сеть выполнена только кабельными линиями, то ККУ любой мощности рекомендуется присоединять непосредственно к шинам цеховой ТП.
Для схем с магистральными шинопроводами ККУ единичной мощностью до 400 квар подключают к сети без дополнительной установки отключающего аппарата (ввиду установки последнего в комплекте ККУ), а при мощности более 400 квар - через отключающий аппарат с выполнением требований ПУЭ.
При мощности ККУ
более 400 квар рекомендуется подключать
их к шинам цеховой ТП с использованием
соответствующего автоматического
выключателя подстанции. На одиночном
магистральном шинопроводе предусматривают
установку не более двух близких по
мощности ККУ суммарной мощностью
.Если
основные реактивные нагрузки шинопровода
присоединены ко второй его половине,
устанавливают только одну НБК. Точку
ее подключения определяют из условия
,
Рис.1. Схема подключения НБК к магистральным шинопроводам:
а - одна НБК; б - две НБК
где Qh, Qh+1 - наибольшие реактивные нагрузки шинопровода перед узлом h и после него соответственно (рис.1, а).
При присоединении к шинопроводу двух НБК точки их подключения находят из следующих условий:
точка подключения дальнейшей НБК (рис.1, б)
;
точка подключения ближней к трансформатору НБК (рис.1, б)
Компенсация реактивной мощности в сетях
напряжением выше 1 кВ
Нескомпенсированная реакт. нагрузка до 1кВ покрывается перетоком мощности с шин 6(10) кВ.
Сети ВН: QВ –QТЭЦ –QСД –QСК –QБК = 0
QЭ1 задается системой, как экономически оптимальная Q, которая м/б передана предприятию в период наибольшей нагрузки на ЭС.
Синхронные компенсаторы применяются редко т.к дороги, значительные потери акт. мощности и сложные условия пуска, «+» быстродействие автоматического регулирования U.
Использование Q генераторов, QТЭЦ экономически целесообразно, но их установка требует больших затрат, чем на БК, т.к ТЭЦ на большинстве предприятий применяются для выработки тепла => QТЭЦ= 0., поэтому для предприятий задача компенсации Q сводится к определению оптимальных значений QСД и QБК в сетях 6(10)кВ.