
- •Витяг із програми до навчальної дисципліни «електротехніка і електроніка»
- •Тематичний план
- •Для студентів денної форми навчання
- •Модуль 2.1. Електричні кола постійного струму
- •Модуль 2.2. Електричні кола змінного струму
- •Модуль 2.3. Напівпровідникові електронні прилади та пристрої
- •Загальні положення до виконання розрахункових завдань
- •Модуль 2.1. Електричні кола постійного струму
- •Тема: Лінійні кола постійного струму.
- •1. Розрахунок простих кіл електричного струму.
- •2. Розрахунок складних кіл електричного струму.
- •2.1. Закони Кірхгофа
- •2.2. Метод суперпозиції
- •2.3. Метод безпосереднього використання законів Кірхгофа.
- •2.5. Метод контурних струмів.
- •2.5. Метод вузлових напруг.
- •2.6. Метод еквівалентного генератора.
- •Модуль 2.2. Електричні кола змінного струму
- •Завдання № 1. Тема: Електричні кола однофазного синусоїдального струму.
- •Завдання № 2. Тема: Трифазні кола.
- •1. Особливості розрахунку кіл змінного струму
- •Модуль 2.3. Напівпровідникові електронні прилади та пристрої
- •Завдання № 1. Тема: Спрямовувачі.
- •З авдання № 2. Тема: Транзисторні підсилювачі напруг.
- •Завдання № 3. Тема: Транзисторні підсилювачі потужності.
- •1. Розрахунок схем спрямовувачів.
- •Визначення параметрів вентильної схеми
- •Визначення параметрів трансформатора Основні параметри трансформаторів живлення.
- •Електроконструктивний розрахунок малопотужного трансформатора живлення
- •Геометричні параметри магнітопроводів.
- •2. Розрахунок схем транзисторних підсилювачів.
- •Розрахунок каскаду транзисторного підсилювача напруги низької частоти з реостатно-ємнісним зв’язком.
- •Порядок розрахунку.
- •Р озрахунок каскаду однотактного транзисторного підсилювача потужності.
- •Література основна
- •Додаток а. Зразок титульного листка у звіті до розрахункових завдань модульного контролю
- •11 Теоретичний матеріал до модуля 2.3.
- •12 Теоретичний матеріал до модуля 2.3.
2.5. Метод контурних струмів.
П
ри
розрахунку складних кіл, що складаються
з великої кількості вузлів, переважним
є метод контурних
струмів, який дозволяє
скоротити загальну кількість рівнянь
в системі.
Сутність методу розглянемо на схемі кола з вузлами А, В, С, D.
Ця схема включає три контури АВСА(І), ADBA(ІІ), CBDC(ІІІ). Кожному контуру умовно приписують довільно направлений контурний струм, однаковий для всіх ділянок цього контуру ІІ, ІІІ, ІІІІ. У вітках, які є спільними для двох суміжних контурів, фактичний струм дорівнює алгебраїчній сумі двох контурних струмів.
Тут:
у вітці АВ протікає струм І2 = ІІІ – ІІ,
у вітці ВС – струм І5 = ІІ – ІІІІ,
у вітці DB – І4 = ІІІ – ІІІІ.
Застосовуючи до кожного з контурів другий закон Кірхгофа, отримаємо систему з кількістю рівнянь, рівною кількості невідомих контурних струмів:
Отриману систему рівнянь доцільно переписати так, щоб шукані струми розташувались у відповідних стовпчиках:
Розв’язавши систему і визначивши контурні струми ІІ, ІІІ, ІІІІ, неважко знайти струми у вітках схеми: I1 = II, I2 = III – II, I3 = III, I4 = III – IIII, I5 = II – IIII, I6 = IIII.
Зауважимо, що при безпосередньому використанні законів Кірхгофа для розрахунку цієї схеми необхідно було б розв’язати систему з шести рівнянь.
Робочий листок MathCAD визначення струмів при конкретних значень вихідних даних для наведеної схеми має вид:
ORIGIN := 1
Вихідні дані:
R1 := 10 R2 := 20 R3 := 50 R4 := 8 R5 := 40 R6 := 25 R7 := 35 R8 := 40
E1 := 12 E2 = 24 E3 = 12 E4 =15
Матриця коефіцієнтів розрахункової системи рівнянь:
Матриця правих частин:
Розв’язання системи рівнянь АІ=В:
Фактичні струми 3:
I1 := I1 I2 := I2 – II I3 := I2 I4 := I2 – I3 I5 := I1 – I3 I6 := I3
I1 = –0.437 I2 = 0.381 I3 = –0.056 I4 = –0.098 I5 = –0.48 I6 = 0.043
При складанні балансу потужностей якщо дійсний напрямок ЕРС і струму у вітці співпадають, то джерело ЕРС працює в режимі генератора і віддає потужність у коло. Якщо напрямки ЕРС і струму протилежні, то джерело ЕРС працює в режимі приймача електроенергії і споживає потужність.
Перевірка:
Потужність, що постачається в коло:
|E1· I5| + |E2 · I2| + |E3 · I4| = 16.086
Потужність, що споживається в колі:
I12·(R1 + R2) + I22·R3 + I32·(R5 + R6) + I42·R7 + I52·R4 + I62·R8 + E4·I6 = 16.086
2.5. Метод вузлових напруг.
Коли електричне коло складається з великої кількості контурів при невеликій кількості вузлів, її розрахунок і аналіз доцільно здійснювати методом вузлових напруг (інша назва – метод вузлових потенціалів).
Якщо кількість вузлів в схемі n, то кількість рівнянь, необхідних для розрахунку такого кола дорівнює (п – 1). Невідомими величинами в цих рівняннях є так звані вузлові напруги. У відповідності з цим методом потенціал в одному з вузлів схеми приймають рівним нулю. В інших вузлах схеми встановлюються потенціали, які відносно вузла з нульовим потенціалом будуть утворювати відповідно вузлові напруги U1, U2, ..., Un–1.
Струм в кожній вітці схеми визначається напругами, прикладеними до вузлів вітки (вузловими напругами), ЕРС, якщо вітка їх містить і опором вітки.
Використовуючи вирази для струмів через вузлові напруги, ЕРС та опри, складають рівняння за першим законом Кірхгофа для кожного вузла схеми за виключенням вузла з нульовою напругою. Сукупність таких рівнянь утворює систему рівнянь відносно невідомих вузлових напруг.
При складанні рівняння для будь-якого і -го вузла можна скористатись вже готовою універсальною формулою:
за якою:
добуток вузлової напруги в і–тому вузлі на суму провідностей віток між і–тим і кожним з сусідніх з і–тим вузлами,
мінус сума добутків вузлових напруг в кожному сусідньому з і–тим вузлі на провідність вітки між цим вузлом і і–тим,
дорівнює сумі добутків ЕРС у вітці між і–тим і кожним сусіднім з і–тим вузлі (якщо вона є у цій вітці) на провідність цієї вітки.
Складові Еij беруться із знаком “+”, якщо ЕРС направлена до і–го вузла і із знаком “–”, якщо вона направлена від і–го вузла.
Розв’язавши систему відносно Uі, можна визначити струми у вітках.