Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теории проектирования механизмов.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
10.5 Mб
Скачать

6.1. Геометрия зубчатых колес

Поверхности взаимодействующих зубьев должны обеспечивать постоянство передаточного числа. Основная теорема зацепления: общая нормаль, проведенная через точку касания профилей, делит расстояние между центрами зубчатых колес на части, обратно пропорциональные угловым скоростям (рис. 6.2). Все геометрические параметры зубчатых колес стандартизованы. В прямозубой передаче зубья входят в зацепление сразу по всей длине. Это явление сопровождается ударами и шумом, сила которых возрастает с увеличением окружной скорости   колёс. Как правило, применяется в открытом и реже в закрытом исполнении.

Рис. 6.2 Геометрические параметры зубчатых колес

П – полюс зацепления; А1, А2 - линия зацепления, S1, S2 – длина активной линии зацепления;   - угол зацепления;   - межосевое расстояние; d1, d2 - диаметры делительных окружностей;   - высота головки и ножки зуба;   - диаметры окружностей впадин,   - диаметры окружностей выступов. Основной параметр зубчатых колес – модуль m. Модуль равен отношению окружного шага зубьев pt по делительной окружности к числу   :

  (6.4)

Делительная окружность делит зуб на две части: головку и ножку. Передаточное отношение    (6.5) 

Значение u ограничивается габаритами передачи. По СТ СЭВ 229-75 значения u (1 ряд) 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3 и т.д. Для одноступенчатых стандартных редукторов не рекомендуется принимать u>5,0.

Основные геометрические размеры определяют в зависимости от модуля m числа зубьев z: 

Делительная окружность - d, начальная окружность – dw

Диаметры делительный и начальный

  (6.6)

  (6.7)

В соответствии с параметрами исходного контура зубчатой рейки получим диаметры вершин da и впадин df зубьев:

 (6.8)

 (6.9)

Межосевое расстояние передачи:

(6.10)

Здесь   - суммарное число зубьев.  Зная определяют число зубьев шестерни   и колёса   . Значение z1 округляют в ближайшую сторону до целого числа. Для прямозубых колёс   

Значения межосевого расстояния   , мм, выбирают из ряда чисел: 40, 50, 63, 80, 125, 140, 160, 180, 200, 224, 250, 280, 315, 355, 400, 450, 500, …, 2500 (СТ СЭВ – 75).

Из формулы (6.6) находим

;   (6.11)

Ширина зубчатого венца колеса

  (6.12)

где   - коэффициент ширины венца колеса. Ширина венца шестерни при твёрдости рабочих поверхностей зубьев менее 350 НВ: 

(6.13).

Значения b1 и b2 принимают из ряда чисел Ra40. Более широкая шестерня учитывает возможное осевое смещение зубчатых колёс из-за неточности сборки, кроме того, это важно при приработке зубьев, когда более твёрдая шестерня перекрывает по ширине более мягкое колесо. При твёрдости рабочих поверхностей зубьев обоих колёс более 350 НВ принимают b1 и b2 (колёса не прирабатываются).

7. Кулачковые механизмы

7.1. Общие сведения

Кулачковые механизмы – плоские или пространственные механизмы с одной высшей кинематической парой, выполняющие самые разные функции, получившие широкое распространение в механизмах перемещения рабочих органов различных машин-автоматов, в устройствах подачи станков, механизмах газораспределения двигателей внутреннего сгорания и во многих других случаях, когда требуется получить возвратно-вращательное или возвратно-поступательное движение ведомого звена по заданному закону. Воспроизведение движения ведомого звена (толкателя) кулачковые механизмы осуществляют теоретически точно. Их ведущее звено называется кулачком.

Кулачковый механизм, в большинстве случаев, является составной частью проектируемой машины. Он может использоваться как основной, но чаще является вспомогательным механизмом для выполнения технологической операции, последовательность и продолжительность которой согласуется с движением звеньев основного механизма.

Поэтому проектирование кулачковых механизмов выполняется после того, как предварительно намечена общая компоновка машины, спроектированы ее рабочие органы, установлена продолжительность и последовательность выполнения элементов движения ведомого звена кулачкового механизма, выбран закон движения.

Проектирование кулачкового механизма заключается в определении взаимного расположения ведущего звена (кулачка), ведомого звена (толкателя) и координат профиля кулачка, обеспечивающих заданный закон движения толкателя. При этом должны быть удовлетворенны требования, определяющиеся технологическим процессом и эксплуатационными показателями механизма. Эти требования отражаются в исходных данных для проектирования.

Проектное решение оценивается комплексом показателей, таких как, размеры, взаимозаменяемость деталей, их прочность, долговечность, стоимость и т.д. Получить решение, в котором все эти показатели являются оптимальными, невозможно. Поэтому оптимизируют один или несколько показателей с обеспечением выполнения ограничений по остальным показателям. Применение системы автоматизированных расчетов курсового проектирования позволяет рассматривать при проектировании многовариантные решения и выбирать наилучший вариант конструкции.

В данном учебном пособии рассмотрена методика проектирования кулачковых механизмов с оптимизацией по габаритам. Дополнительное условие синтеза - обеспечение допустимых углов давления на входное звено во всех положениях механизма, т.е. обеспечение отсутствия заклинивания кулачкового механизма.