
- •Введение
- •1. Структура и классификация механизмов
- •1.1. Структура механизмов
- •1.2. Классификация механизмов
- •1.3. Структурные группы для плоских рычажных механизмов
- •2. Кинематический анализ механизмов
- •2.1. Цели и задачи кинематического анализа
- •2.2. Графический метод кинематического анализа
- •2.3. Графоаналитический метод кинематического анализа
- •2.4. Планы скоростей и ускорений шарнирного четырёхзвенника
- •План скоростей механизма и его свойства
- •План ускорений механизма и его свойства
- •Использование плана скоростей и плана ускорений для определения радиуса кривизны траектории движения точки
- •Использование плана скоростей и плана ускорений для определения мгновенного центра скоростей (мцс) и мгновенного центра ускорений (мцу) звена
- •2.5. Планы скоростей и ускорений кривошипно-ползунного механизма
- •2.6. Планы скоростей и ускорений кулисного механизма
- •Угловая скорость коромысла 3 вычисляется по формуле:
- •2.7. Аналитический метод кинематического анализа
- •2.7.1. Общие сведения о методе
- •2.7.2. Функция положения. Аналог скорости. Аналог ускорения
- •2.7.3. Аналитическое исследование кривошипно-ползунного механизма
- •Решение задачи о положениях
- •Решение задачи о скоростях
- •Решение задачи об ускорениях
- •Метод замещающих точек.
- •Определение центра качания звена через мгновенный центр ускорений (мцу).
- •3.2. Статическая определимость кинематической цепи
- •3.3. Силовой анализ характерных структурных групп
- •3.3.1. Структурная группа 2-го класса, 1-го вида
- •3.3.2. Структурная группа 2-го класса, 2-го вида
- •3.3.3. Структурная группа 2-го класса, 3-го вида
- •3.3.4. Силовой анализ ведущего звена
- •3.4. Теорема о «жёстком» рычаге Жуковского
- •3.5. Силовой анализ механизма с учетом сил трения
- •3.5.1. Теоретические основы определения коэффициента трения Трение в поступательной кинематической паре
- •Трение качения в высшей кинематической паре
- •3.5.2. Пример учета сил трения при силовом анализе механизма
- •4. Динамика машин
- •4.1. Общие положения
- •4.2. Кинетическая энергия, приведенная масса, приведенный момент инерции механизма
- •4.3. Уравнение движения машины в форме кинетической энергии
- •4.4. Уравнение движения машины в дифференциальной форме
- •4.5. Режимы движения машины
- •4.6. Механический кпд механизма
- •Определение кпд машинного агрегата при последовательном соединении входящих в него механизмов
- •Определение кпд машинного агрегата при параллельном соединении входящих в него механизмов
- •Самоторможение
- •4.7. Неравномерность хода ведущего звена машины
- •4.8. Регулирование периодических колебаний угловой скорости с помощью маховика
- •Пример выполнения курсового проекта
- •5.1. Содержание (приблизительное) расчетно-пояснительной записки
- •5.2. Введение
- •5.3. Структурный анализ рычажного механизма
- •5.4. Кинематический анализ механизма
- •5.4.1. Построение планов механизма
- •5.4.2. Построение планов скоростей
- •5.4.3. Построение плана ускорений
- •5.4.4. Построение кинематических диаграмм Построение графика
- •5.5.4 Определение уравновешивающего момента методом плана сил
- •5.6. Синтез кулачкового механизма
- •5.6.1 Кинематические диаграммы толкателя
- •5.6.2. Начальный радиус кулачка rmin
- •5.6.3. Построение профиля кулачка
- •5.6.4. Углы давления
- •6. Основы теории зубчатого зацепления
- •6.1. Геометрия зубчатых колес
- •7. Кулачковые механизмы
- •7.1. Общие сведения
- •7.2. Исходные данные, основные требования и этапы проектирования
- •7.3. Выбор закона движения толкателя
- •7.4. Определение кинематических передаточных функций кулачкового механизма
- •7.5. Определение основных размеров кулачкового механизма из условия ограничения угла давления
- •7.6. Определение координат профиля кулачка
- •7.7. Проектирование кулачковых механизмов графическим методом
- •8. Схемы заданий кривошипно-рычажных механизмов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Задание 7
- •Задание 8
- •Задание 9
- •Задание 10
- •Задание 11
- •Задание 12
- •Задание 13
- •Задание 14
- •Задание 15
- •Задание 16
- •Задание 17
- •Задание 18
- •Задание 19
- •Задание 20
- •Задание 21
- •Задание 22
- •9. Схемы заданий кулачковых механизмов
- •10. Примеры выполнения графической части
- •Заключение
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
3.3. Силовой анализ характерных структурных групп
3.3.1. Структурная группа 2-го класса, 1-го вида
Известны
внешние силы
и
,
а также точки их приложения К2
и К3.
Найти реакции в кинематических парах А, В и С (рис. 3.5).
Решение
Строим структурную группу в масштабе длин L (рис. 3.5).
Наносим на неё все внешние силы и .
В кинематических парах А и С действие отброшенных звеньев (например, кривошипа 1 и стойки 0) заменяем силами реакций
и
, разложив каждую из них на нормальную и тангенциальную составляющие:
=
+
и
=
+
.
Составляем уравнение равновесия структурной группы:
,
или
.
(3.1)
Рис. 3.5. План структурной группы 2-го класса, 1-го вида
Вычисляем величины тангециальных сил; для этого используем условие, при котром моменты сил относительно точки В, приложенных к звеньям 2 и 3, равны нулю:
,
,
откуда
;
,
,
откуда
.
Следует учитывать, что если в процессе решения эти тангенциальные силы получились с отрицательным знаком, то на плане структурной группы их предварительно выбранное направление следует поменять на противоположное.
Неизвестные
и
находим путём графического изображения векторного уравнения (3.1) в масштабе, т.е. строим план сил структурной группы, для чего выбираем масштаб плана сил:
,
Н/м,
где
– длина вектора, мм, изображающего силу
на плане сил, выбирается произвольно.
При выборе учитываются два условия: план сил должен размещаться на отведённом месте чертежа, масштаб должен быть удобен для расчётов (быть круглым числом).
Переводим (пересчитываем) силы уравнения (3.1) в векторные отрезки с длинами:
,
мм;
,
мм;
,
мм.
Тогда уравнение (3.1) запишется в виде:
.
(3.2).
Построение плана сил ведём в последовательности написания уравнения (3.2), (рис. 3.6).
Вычисляем реакции:
,
где
длины отрезков
и
берем в мм из плана сил.
Определяем реакцию в кинематической паре В, для чего составляем векторное уравнение равновесия звена 2 или звена 3. Например, условие равновесия звена 2 можно записать в виде:
,
(3.3)
где R3-2 – сила реакции в кинематической паре В.
Так
как
и
известны, то, построив план сил звена 2
(рис. 3.7) и графически изобразив уравнение
(3.3), получим силу
:
.
Рис. 3.6. План сил звена 2
Рис. 3.7. План сил структурной группы
3.3.2. Структурная группа 2-го класса, 2-го вида
Условие равновесия структурной группы (рис. 3.8):
.
(3.4)
Рис. 3.8. План структурной группы 2-го класса, 2-го вида
Величина тангенциальной составляющей силы реакции в шарнире вычисляется по формуле, полученной из условия равенства нулю моментов всех сил, приложенных к шатуну 4, относительно точки F:
;
,
откуда находим:
,
где h4 – плечо силы Р4 относительно точки F, берется из плана структурной группы (см. рис. 3.6), построенной в масштабе длин L.
Силы
и
берут из плана сил, построенного с
использованием уравнения (3.4) в выбранном
масштабе
,
а силу
находят из
уравнения равновесия ползуна
,
построив план сил ползуна.