Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа №2 для 4С.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
461.31 Кб
Скачать

Решение с помощью Excel .

1. Для оценки показателя вариации каждого признака необходимо составить сводную таблицу основных статистических характеристик для одного или нескольких массивов данных, которую можно получить с помощью инструмента анализа данных, Описательная статистика. Для этого следует выполнить следующие шаги:

  1. введите исходные данные или откройте существующий файл, содержащий анализируемые данные;

в главном меню выберите последовательно пункты Сервис/Анализ данных/Описательная статистика, после чего щелкните по кнопке OK;

  1. заполните диалоговое окно ввода данных и параметров вывода (рис. 5.1).

Рис. 5.1. Диалоговое окно ввода параметров инструмента

Описательная статистика

Входной интервал – диапазон, содержащий анализируемые данные, это может быть одна или несколько строк (столбцов).

Группирование – по столбцам или строкам – необходимо указать дополнительно.

Метки – флажок, который указывает, содержит ли первая строка названия столбцов или нет.

Выходной интервал – достаточно указать верхнюю левую ячейку будущего диапазона.

Новый рабочий лист - можно задать произвольное имя нового листа.

Если необходимо получить дополнительную информацию по итоговой статистике, уровню надежности, k-го наибольшего и наименьшего значений, установите соответствующие флажки в диалоговом окне. Щелкните по кнопке OK.

Результаты вычисления соответствующих показателей для каждого признака представлены на рис. 5.2.

Рис. 5.2. Результат применения инструмента Описательная статистика

Сравнивая значения средних квадратических σy, σx1, σx21 отклонений и средних величин , и определяя коэффициенты вариации, приходим к выводу о повышенном уровне варьирования признаков, хотя и в допустимых пределах, не превышающих 35%.

;

;

.

Следовательно, совокупность предприятий однородна, и для ее изучения могут использоваться метод наименьших квадратов и вероятностные методы оценки статистических гипотез.

2. Значения линейных коэффициентов парной корреляции определяют тесноту попарно связанных переменных, использованных в данном уравнении множественной регрессии. Линейные коэффициенты частной корреляции оценивают тесноту связи значений двух переменных, исключая влияние всех других переменных, представленных в уравнении множественной регрессии.

К сожалению, в ППП Excel нет специального инструмента для расчета линейных коэффициентов частной корреляции. Матрицу парных коэффициентов корреляции переменных можно рассчитать, используя инструмент анализа данных Корреляция. Для этого:

1) в главном меню последовательно выберите пункты Сервис/ Анализ данных/ Корреляция. Щелкните по кнопке OK;

2) заполните диалоговое окно ввода данных и параметров вывода (см. рис. 1.1);

3) результаты вычислений – матрица коэффициентов парной корреляции – представлены на рис. 5.3.

Значения коэффициентов парной корреляции указывают на весьма тесную связь выработки y как с коэффициентом обновления основных фондов - , так и с долей рабочих высокой квалификации - ( и ). Но в то же время, межфакторная связь весьма тесная и превышает тесноту связи с y. В связи с этим для улучшения данной модели можно исключить из нее фактор как малоинформативный, недостаточно статистически надежный.

Рис. 5.3. Матрица коэффициентов парной корреляции

Коэффициенты частной корреляции дают более точную характеристику тесноты связи двух признаков, чем коэффициенты парной корреляции. Если сравнивать коэффициенты парной и частной корреляции, можно сказать, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи, именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.