
- •1. Общая характеристика, краткие сведения о элементах, истории открытия и их распространенности в природе
- •1.1 Общая характеристика
- •1.2 История открытия элементов
- •2. Изменения в группе величины радиусов атомов и ионов, потенциала ионизации.
- •3. Сравнение свойств простых веществ. Свойства пероксидов и супероксидов
- •3.1 Свойства кислорода
- •3.2 Свойства серы
- •3.3 Свойства селена
- •3.4 Свойства теллура
- •3.5 Свойства полония
- •4. Сера: свойства соединений в отрицательных степенях окисления (сульфиды и полисульфиды); свойства соединений, содержащих серу в положительных степенях окисления (галогенды и оксогалогениды)
- •4.1 Свойства сульфидов
- •4.2 Полисульфиды
- •4.3 Галогениды и оксогалогениды
- •5. Политионовые кислоты, пероксосерные кислоты и их соли
- •6. Свойства селена и теллура и их соединений: селеноводород, теллуроводород, оксиды, кислородосодержащие кислоты
- •6.1 Химические свойства селена
- •6.2 Химические свойства теллура
- •7. Качественные реакции на сульфат-ионы и сульфид-ионы
- •8. Соединения элементов via-группы как лекарственные средства
- •8.1 Применение кислорода
- •8.2 Применение серы
- •8.3 Применение селена
- •9. Медико-биологическое значение элементов via-группы
- •10. Селен как элемент, способствующий проявлению кариеса
3.2 Свойства серы
Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень окисления -2. Такую степень окисления сера проявляет в соединениях с металлами и водородом (например, Na2S и Н2S).
При отдаче или оттягивании электронов к атому более электроотрицательного элемента степень окисления серы может быть +2, +4 и +6.
Сера легко образует соединения со многими элементами. При сгорании ее на воздухе или в кислороде образуется оксид серы (IV) SО2 и частично оксид серы (VI) SO3:
S + O2 = SO2 и 2S + 3O2 = 2SO3
Это наиболее важные оксиды серы.
При нагревании сера непосредственно соединяется с водородом, галогенами (кроме йода), фосфором, углем, а также со всеми металлами, кроме золота, платины и иридия. Например:
S + Н2 = Н2S; 3S + 2Р = Р2S3; S + Cl2 = SСl2; 2S + С = СS2; S + Fе = FеS
Как следует из примеров, в реакциях с металлами и некоторыми неметаллами сера является окислителем, в реакциях же с более активными неметаллами, как например, с кислородом, хлором, - восстановителем.
3.3 Свойства селена
Селен - аналог серы и проявляет степени окисления 2 (H2Se), +4 (SeO2) и +6 (H2SeO4). Однако, в отличие от серы, соединения селена в степени окисления +6 - сильнейшие окислители, а соединения селена (-2) гораздо более сильные восстановители, чем соответствующие соединения серы.
Простое вещество - селен гораздо менее активно химически, чем сера. Так, в отличие от серы, селен не способен гореть на воздухе самостоятельно. Окислить селен удаётся только при дополнительном нагревании, при котором он медленного горит синим пламенем, превращаясь в двуокись SeO2. Со щелочными металлами селен реагирует (весьма бурно) только будучи расплавленным.
В отличие от SO2, SeO2 - не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO2 + H2O > H2SeO3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO3), получают селеновую кислоту H2SeO4, почти такую же сильную, как серная.
3.4 Свойства теллура
Теллур -хрупкое серебристо-белое вещество с металлическим блеском. В тонких слоях на просвет красно-коричневый, в парах - золотисто-жёлтый.
Химически теллур менее активен, чем сера. Он растворяется в щелочах, поддается действию азотной и серной кислот, но в разбавленной соляной кислоте растворяется слабо. С водой металлический теллур начинает реагировать при 100 °C, а в виде порошка он окисляется на воздухе даже при комнатной температуре, образуя оксид TeO2.
При нагреве на воздухе теллур сгорает, образуя TeO2. Это прочное соединение обладает меньшей летучестью, чем сам теллур. Поэтому для очистки теллура от оксидов их восстанавливают проточным водородом при 500 - 600 °C.
В расплавленном состоянии теллур довольно инертен, поэтому в качестве контейнерных материалов при его плавке применяют графит и кварц.
3.5 Свойства полония
В разбавленной соляной кислоте полоний медленно растворяется, образуя розовые растворы (цвет ионов Po2+):Po + 2HCl > PoCl2 + Н2, однако под действием собственной радиации дихлорид превращается в жёлтый тетрахлорид PoCl4. Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет. С неметаллами VI группы полоний роднят реакция с водородом, при которой образуется летучий гидрид PoН2 (т. пл. -35°С, т. кип. +35°С, легко разлагается), реакция с металлами (при нагревании) с образованием твёрдых полонидов черного цвета (Na2Po, Ag2Po, BePo, MgPo, CaPo, ZnPo, HgPo, PbPo, NiPo, PtPo) и реакция с расплавленными щелочами с образованием полонидов и солей полониевой кислоты:3Po + 6NaOH > 2Na2Po + Na2PoO3 + Н2O. С хлором полоний реагирует при нагревании, образуя ярко-жёлтыекристаллы PoCl4, с бромом получаются красные кристаллы PoBr4, с иодом уже при 40°С - чёрный летучий иодид PoI4. Известен и белый тетрафторид полония PoF4. При нагревании тетрагалогениды разлагаются с образованием более стабильных дигалогенидов - рубиново-красного PoCl2 и фиолетово-коричневого PoBr2. Известны комплексные галогениды, например (NH4)2PoBr6. В растворах полоний существует в виде катионов Po2+, Po4+, анионов PoO32-, PoO42-, а также разнообразных комплексных ионов, например PoCl62-.