Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АНАЛИЗ ВРЕМЕННЫХ РЯДОВ студентам.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
169.98 Кб
Скачать

Метод аналитического выравнивания

Основным содержанием метода аналитического выравнивания временных рядов является расчет общей тенденции развития (тренда) как функции времени:

где - теоретические значения временного ряда, вычисленные по соответствующе­му аналитическому уравнению на момент времени t.

Определение теоретических (расчетных) значений , производится на основе так называемой адекватной математической модели, которая наилучшим образом отобра­жает основную тенденцию развития временного ряда.

Простейшими моделями (формулами), выражающими тенденцию развития, явля­ются следующие:

- линейная функция, график которой является прямой линией:

- показательная функция:

Yt = a0 * a1t

- степенная функция второго порядка, график которой является параболой:

Yt = a0 + a1* t + a2* t2

- логарифмическая функция:

Yt = a0 + a1* ln t

Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадра­тов отклонений между теоретическим и эмпирическим уровнями:

где — выровненные (расчетные) уровни, а Yt — фактические уровни.

Параметры уравнения ai удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выровненные уровни.

Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

Выравнивание по показательной функции применяется, когда ряд отражает развитие в геометрической профессии, т.е. цепные коэффициенты роста практически постоянны.

Выравнивание по степенной функции (параболе второго порядка) используется, ко­гда ряды динамики изменяются с постоянными цепными темпами прироста.

Выравнивание по логарифмической функции применяется, когда ряд отражает разви­тие с замедлением роста в конце периода, т.е. когда прирост в конечных уровнях вре­менного ряда стремится к нулю.

По вычисленным параметрам выполняется синтез трендовой модели функции, т.е. получение значений a 0, a1, a,2 и их подстановка в искомое уравнение.

Правильность расчетов аналитических уровней можно проверить по следующему условию: сумма значений эмпирического ряда должна совпадать с суммой вычислен­ных уровней выровненного ряда. При этом может возникнуть небольшая погрешность в расчетах из-за округления вычисляемых величин:

Для оценки точности трендовой модели используется коэффициент детерминации:

где - дисперсия теоретических данных, полученных по трендовой модели, а - дисперсия эмпирических данных.

Трендовая модель адекватна изучаемому процессу и отражает тенденцию его раз­вития при значениях R2, близких к 1.

После выбора наиболее адекватной модели можно сделать прогноз на любой из периодов. При составлении прогнозов оперируют не точечной, а интервальной оцен­кой, определяя так называемые доверительные интервалы прогноза. Величина довери­тельного интервала определяется в общем виде следующим образом:

где среднее квадратическое отклонение от тренда; tтабличное значение t- критерия Стьюдента при уровне значимости , которое зависит от уровня значимо­сти (%) и числа степеней свободы к = п - т. Величина - определяется по формуле:

где и – фактические и расчетные значения уровней динамического ряда; п — число уровней ряда; т— количество параметров в уравнении тренда (для уравнения прямой т - 2, для уравнения параболы 2-го порядка т = 3).

После необходимых расчетов определяется интервал, в котором с определенной вероятностью будет находиться прогнозируемая величина.

С помощью Microsoft Excel строить трендовые модели достаточно просто. Сначала эмпирический временной ряд следует представить в виде диаграммы одного из сле­дующих типов: гистограмма, линейчатая диаграмма, график, точечная диаграмма, диаграмма с областями, а затем щелкнуть на диаграмме правой кнопкой мыши на од­ном из маркеров данных. В результате на диаграмме будет выделен сам временной ряд, а на экране раскроется контекстное меню. В этом ме­ню следует выбрать команду Add Trendline (Добавить линию тренда). На экран будет выведено диалоговое окно Add Trendline.

На вкладке Туре (Тип) этого диалогового окна выбирается требуемый тип тренда:

  1. линейный (Linear);

  2. логарифмический (Logarithmic);

  3. полиномиальный, от 2-й до 6-й степени включительно (Polinomial);

  4. степенной (Power);

  5. экспоненциальный (Exponential);

  6. скользящее среднее, с указанием периода сглаживания от 2 до 15 (Moving Average).

На вкладке Options (Параметры) этого диалогового окна задаются дополнительные параметры тренда.

1. Trendline Name (Название сглаженной кривой) — в этой группе выбирается на­звание, которое будет выведено на диаграмму для обозначения функции, исполь­зованной для сглаживания временного ряда. Возможны следующие варианты:

♦ Automatic (Автоматическое) — при установке переключателя в это положе­ние Microsoft Excel автоматически формирует название функции сглажива­ния тренда, основываясь на выбранном типе тренда, например Linear (Линейная функция).

♦ Custom (Другое) — при установке переключателя в данное положение в по­ле справа можно ввести собственное название для функции тренда, длиной до 256 символов.

  1. Forecast (Прогноз) — в этой группе можно указать, на сколько периодов вперед (поле Forward) требуется спроектировать линию тренда в будущее и на сколько периодов назад (поле Backward) следует спроектировать линию тренда в про­шлое (эти поля недоступны в режиме скользящего среднего).

  2. Set intercept (Пересечение кривой с осью Y в точке) — этот флажок опции и расположенное справа поле ввода позволяют непосредственно указать точку, в которой линия тренда должна пересекать ось Y (эти поля доступны не для всех режимов).

  3. Display equation on chart (Показывать уравнение на диаграмме) — при установке этого флажка опции на диаграмму будет выведено уравнение, описывающее сглаживающую линию тренда.

  4. Display R-squared value on chart (Поместить на диаграмму величину достоверно­сти аппроксимации R2) — при установке данного флажка опции на диаграмме будет показано значение коэффициента детерминации.

Вместе с линией тренда на графике временного ряда могут быть также изображены планки погрешностей. Для вставки планок погрешностей необходимо выделить ряд данных, щелкнуть на нем правой кнопкой мыши и выбрать в раскрывшемся контек­стном меню команду Format Data Series. На экране раскроется диалоговое окно Format Data Series (Формат ряда данных), в котором следует перейти на вкладку Y Error Bars (Y-погрешности).

На этой вкладке с помощью переключателя Error amount (Величина погрешности) выбирается тип планок и вариант их расчета в зависимости от вида погрешности.

  1. Fixed value (Фиксированное значение) — при установке переключателя в это положение за допустимую величину ошибки принимается заданное в поле счетчика справа постоянное значение;

  2. Percentage (Относительное значение) — при установке переключателя в данное положение для каждой точки данных вычисляется допустимое отклонение, исходя из заданного в поле счетчика справа значения процента;

  3. Standard deviation(s) (Стандартное отклонение) — при установке переключателя в данное положение для каждой точки данных вычисляется стандартное отклонение, которое затем умножается на заданное в поле счетчика справа число (коэффициент кратности);

  4. Standard error (Стандартная погрешность) — при установке переключателя в данное положение принимается стандартная величина ошибки, постоянная для всех элементов данных;

  5. Custom (Пользовательская) — при установке переключателя в это положение вводится произвольный массив значений отклонений в положительную и/или отрицательную сторону (можно ввести ссылки на диапазон ячеек).

Планки погрешностей тоже можно форматировать. Для этого их следует выделить щелчком правой кнопки мыши и выбрать в раскрывшемся контекстном меню коман­ду Format Error Bars (Формат планок погрешностей).

Задание 3. С помощью программы Microsoft Excel на основании данных об объеме выпуска Задания 1 необходимо:

  • представить временной ряд в виде графика, построенного с помощью мастера диаграмм. Затем добавить линию тренда, подбирая наиболее подходящий вариант уравнения.

  • Представить полученные результаты в виде таблицы «Подбор уравнения тренда»:

Таблица «Подбор уравнения тренда»

Вид уравнения

Найденное уравнение

Коэффициент

детерминации R2

Линейное

Y=

Логарифмическое

Y=

Полином второго порядка

Y=

Полином третьего порядка

Y=

Степенное

Y=

Экспоненциальное

Y=

- Представить выбранное уравнение графически, вынеся в график данные о наименовании полученной функции и величину достоверности аппроксимации (R2).

Задание 4. Ответьте на следующие вопросы:

1. При анализе тренда для некоторого набора данных коэффициент детерминации для линейной модели оказался равен 0,95, для логарифмической — 0,8, а для полинома третьей степени — 0,9636. Какая трендовая модель наиболее адекват­на изучаемому процессу:

а) линейная;

б) логарифмическая;

в) полином 3-й степени.

2. По данным, представленным в задании 1, спрогнозируйте объем выпуска про­дукции в 2003 году. Какая общая тенденция поведения исследуемой величины следует из результатов вашего прогноза:

а) наблюдается спад производства;

б) производство остается на прежнем уровне;

в) наблюдается рост производства.

Резюме

В данном материале были рассмотрены основные характеристики временного ряда, мо­дели декомпозиции временного ряда, а также основные методы сглаживания ряда — метод скользящего среднего, экспоненциального сглаживания и аналитического вы­равнивания. Для решения этих задач Microsoft Excel предлагаются такие инструменты, как Moving Average (Скользящее среднее) и Exponential Smoothing (Экспоненциальное сглаживание), которые позволяют сглаживать уровни эмпирического временного ряда, а также команда Add Trendiine (Добавить линию тренда), которая позволяет строить модели тренда и делать прогноз на основе имеющихся значений временного ряда.

P.S. Чтобы включить «Пакет анализ данных», выберите команду Tools →Data Analysis (Сервис → Анализ данных).

Если Data Analysis отсутствует, то необходимо выполнить следующие действия:

  1. Выбрать команду Tools → Add-ins (Надстройки).

  2. Выбрать в предложенном списке настроек значение Analysis ToolPak (Пакет анализа), а затем щелкнуть ОК. После этого будет выполнена загрузка и подключение к Excel пакета настройки «Анализ данных». Соответствующая команда появится в меню Tools.