
- •230100 «Информатика
- •Лекция 1. Основные понятия
- •1.1 Терминология
- •1.2 Стеганография
- •Лекция 2. Докомпьютерные шифры
- •2.1 Подстановочные и перестановочные шифры
- •1.4 Простое xor
- •1.5 Одноразовые блокноты
- •Лекция 3. Криптографические протоколы
- •1 Введение в протоколы
- •2.2 Передача информации с использованием симметричной криптографии
- •2.3 Однонаправленные функции
- •2.4 Однонаправленные хэш-функции
- •2.5 Передача информации с использованием криптографии с открытыми ключами
- •Лекция 4. Цифровые подписи
- •1. Подпись документа с использованием симметричных криптосистем и посредника
- •2.7 Цифровые подписи и шифрование
- •2.8. Генерация случайных и псевдослучайных последовательностей
- •Лекция 5. Основные протоколы
- •1 Обмен ключами
- •Лекция 6. Алгоритмы аутентификации пользователей (Удостоверение подлинности)
- •3.3 Удостоверение подлинности и обмен ключами
- •3.4 Формальный анализ протоколов проверки подлинности и обмена ключами
- •Лекция 7. Цифровые подписи.
- •1. Неотрицаемые цифровые подписи
- •4.4 Подписи уполномоченного свидетеля
- •4.5 Подписи по доверенности
- •4.6 Групповые подписи
- •4.7 Подписи с обнаружением подделки
- •Лекция 8. Длина ключа
- •1 Длина симметричного ключа
- •7.2 Длина открытого ключа
- •7.3 Сравнение длин симметричных и открытых ключей
- •7.4 Вскрытие в день рождения против однонаправленных хэш-функций
- •7.5 Каков должны быть длина ключа?
- •Лекция 9. Управление ключами
- •1 Генерация ключей
- •8.2 Нелинейные пространства ключей
- •8.3 Передача ключей
- •8.4 Проверка ключей
- •8.5 Использование ключей
- •8.6 Обновление ключей
- •8.7 Хранение ключей
- •8.8 Резервные ключи
- •8.9 Скомпрометированные ключи
- •8.10 Время жизни ключей
- •8.11 Разрушение ключей
- •8.12 Управление открытыми ключами
- •Лекция 10. Типы алгоритмов и криптографические режимы
- •9.1 Режим электронной шифровальной книги
- •9.2 Повтор блока
- •9.3 Режим сцепления блоков шифра
- •9.4 Потоковые шифры
- •9.5 Самосинхронизирующиеся потоковые шифры
- •9.6 Режим обратной связи по шифру
- •9.7 Синхронные потоковые шифры
- •9.8 Режим выходной обратной связи
- •9.9 Режим счетчика
- •9.10 Другие режимы блочных шифров
- •Лекции 12. Математические основы
- •11.1 Теория информации
- •Энтропия и неопределенность
- •Норма языка
- •Безопасность криптосистемы
- •Расстояние уникальности
- •Практическое использование теории информации
- •Путаница и диффузия
- •11.2 Теория сложности
- •Сложность алгоритмов
- •Сложность проблем
- •11.3 Теория чисел
- •Арифметика вычетов
- •Простые числа
- •Наибольший общий делитель
- •Обратные значения по модулю
- •Решение для коэффициентов
- •Малая теорема Ферма
- •Функция Эйлера
- •Китайская теорема об остатках
- •Квадратичные вычеты
- •Символ Лежандра
- •Символ Якоби
- •Целые числа Блюма
- •Генераторы
- •Вычисление в поле Галуа
- •11.4 Разложение на множители
- •Квадратные корни по модулю п
- •11.5 Генерация простого числа
- •Практические соображения
- •Сильные простые числа
- •11.6 Дискретные логарифмы в конечном поле
- •Вычисление дискретных логарифмов в конечной группе
- •Лекция 13. Стандарт шифрования данных des (Data Encryption Standard)
- •12.1 Введение
- •Разработка стандарта
- •Принятие стандарта
- •Проверка и сертификация оборудования des
- •12.2 Описание des
- •Начальная перестановка
- •Преобразования ключа
- •Перестановка с расширением
- •Подстановка с помощью s-блоков
- •Перестановка с помощью р-блоков
- •Заключительная перестановка
- •Дешифрирование des
- •Режимы des
- •Аппаратные и программные реализации des
- •15.1 Двойное шифрование
- •15.3 Удвоение длины блока
- •15.4 Другие схемы многократного шифрования
- •15.5 Уменьшение длины ключа в cdmf
- •15.6 Отбеливание
- •15.7 Многократное последовательное использование блочных алгоритмов
- •15.8 Объединение нескольких блочных алгоритмов
- •16.1 Линейные конгруэнтные генераторы
- •Константы для линейных конгруэнтных генераторов
- •16.2 Сдвиговые регистры с линейной обратной связью
- •16.3 Проектирование и анализ потоковых шифров
- •16.4 Потоковые шифры на базе lfsr
- •18.1 Основы
- •18.7 Алгоритм безопасного хэширования (Secure Hash Algorithm, sha)
- •Лекция 17. Алгоритмы с открытыми ключами
- •19.2 Алгоритмы рюкзака
- •Иностранные патенты на алгоритм рюкзака Меркла-Хеллмана
- •Шифрование rsa
- •Скорости rsa для различных длин модулей при 8-битовом открытом ключе (на sparc II)
- •Лекция 19. Безопасность вычислительных сетей Атакуемые сетевые компоненты
- •Уровни сетевых атак согласно модели osi
11.6 Дискретные логарифмы в конечном поле
В качестве другой однонаправленной функции в криптографии часто используется возведение в степень по модулю. Легко вычислить:
ax mod n
Задачей, обратной возведению в степень по модулю, является поиск дискретного логарифма. А это уже нелегкая задача:
Найти х, для которого ах = b (mod n).
Например:
Если 3х = 15 mod 17, то х = 6
Решения существуют не для всех дискретных логарифмов (помните, речь идет только о целочисленных решениях). Легко заметить, что следующее уравнение не имеет решений
3х =7 (mod 13)
Еще сложнее решать эту задачу для 1024-битовых чисел.
Вычисление дискретных логарифмов в конечной группе
Криптографы интересуются дискретными логарифмами следующих трех групп:
— Мультипликативная группа полей простых чисел: GF(p)
— Мультипликативная группа конечных полей степеней 2: GF(2n)
— Группы эллиптической кривой над конечными полями F: EC(F)
Безопасность многих алгоритмов с открытыми ключами основана на задаче поиска дискретных логарифмов, поэтому эта задача была глубоко изучена. Хороший подробный обзор этой проблемы и ее наилучшие решения на соответствующий момент времени можно найти в [1189, 1039]. Лучшей современной статьей на эту тему является [934].
Если р является простым числом и используется в качестве модуля, то сложность поиска дискретных логарифмов в GF(p) по существу соответствует разложению на множители числа п того же размера, где п - это произведение двух простых чисел приблизительно равной длины [1378,934]. То есть:
Решето числового поля быстрее, оценка его эвристического времени выполнения:
Стивен Полит (Stephen Pohlig) и Мартин Хеллман нашли способ быстрого вычисления дискретных логарифмов в GF(p) при условии, что р - 1 раскладывается на малые простые множители [1253]. По этой причине в криптографии используются только такие поля, для которых р - 1 обладает хотя бы одним большим простым множителем. Другой алгоритм [14] вычисляет дискретных логарифм со скоростью, сравнимой с разложением на множители, он был расширен на поля вида GF(pn) [716]. Этот алгоритм был подвергнут критике в [727] по ряду теоретических моментов. В других статьях [1588] можно увидеть, насколько на самом деле трудна проблема в целом.
Вычисление дискретных логарифмов тесно связано с разложением на множители. Если вы можете решить проблему дискретного логарифма, то вы можете и разложить на множители. (Истинность обратного никогда не была доказана.) В настоящее время существует три метода вычисления дискретных логарифмов в поле простого числа [370, 934, 648]: линейное решето, схема целых чисел Гаусса и решето числового поля.
Предварительное, объемное вычисление для поля должно быть выполнено только один раз. Затем, быстро можно вычислять отдельные логарифмы. Это может серьезно уменьшить безопасность систем, основанных на таких полях. Важно, чтобы различные приложения использовали различные поля простых чисел. Хотя несколько пользователей одного приложения могут применять общее поле.
В мире расширенных полей исследователями не игнорируются и GF(2n). Алгоритм был предложен в [727]. Алгоритм Копперсмита (Coppersmith) позволяет за приемлемое время находить дискретные логарифмы в таких полях как GF(2127) и делает принципиально возможным их поиск в полях порядка GF(2400) [368]. В его основе лежит [180]. У этого алгоритма очень велика стадия предварительных вычислений, но во всем остальном он хорош и эффективен. Реализация менее эффективной версии этого же алгоритма после семи часов предварительных вычислений тратила на нахождение каждого дискретного логарифма в поле GF(2127) лишь несколько секунд [ИЗО, 180]. (Это конкретное поле, когда-то использовавшееся в некоторых криптосистемах [142, 1631, 1632], не является безопасным.) Обзор некоторых из этих результатов можно найти в [1189, 1039].
Позднее были выполнены предварительные вычисления для полей GF(2227), GF(2313) и GF(2401), удалось значительно продвинуться и для поля GF(2503). Эти вычисления проводились на nCube-2, массивном параллельном компьютере с 1024 процессорами [649, 650]. Вычисление дискретных логарифмов в поле GF(2 593) все еще находится за пределами возможного.
Как и для нахождения дискретных логарифмов в поле простого числа, для вычисления дискретных логарифмов в полиномиальном поле также требуется один раз выполнить предварительные вычисления. Тахер Эль-Джамаль (Taher EIGamal) [520] приводит алгоритм вычисления дискретных логарифмов в поле GF( р2)