
- •2.1 Теоретические сведения 28
- •Лабораторная работа № 1 Моделирование внутрикамерного устройства для процесса нанесения пленок с кольцеобразным источником материала
- •1.1 Теоретические сведения
- •1.1.1 Общие сведения о моделируемом объекте
- •1.1.2. Постановка задачи
- •1.1.3. Построение геометрической модели
- •1.1.4. Математическая модель процесса осаждения пленки
- •1.2 Лабораторное задание
- •1.2.1 Техническое оснащение
- •1.3 Методика выполнения работы
- •1.3.1 Требования к отчету
- •1.3.2 Инструкция по работе с программой «magna»
- •1.3.3 Контрольные вопросы
- •Лабораторная работа № 2 Моделирование системы ионного травления с ионным источником и ионно-оптической системой
- •2.1 Теоретические сведения
- •2.1.1 Общие сведения
- •2.1.2 Постановка задачи
- •2.2 Моделирование системы травления
- •2.2.1 Конструктивная схема системы обработки
- •2.2.2 Геометрическая модель иос
- •2.2.3 Классификация параметров иос
- •2.2.4 Математическая модель иос
- •2.3 Лабораторное задание
- •2.3.1 Техническое оснащение
- •2.4 Методика выполнения работы
- •2.4.1 Требования к отчету
- •2.4.2 Инструкция по работе с программой «ios»
- •2.4.3 Контрольные вопросы
- •Список литературы
2.1.2 Постановка задачи
Задача оптимизации конструкции ИОС заключается в выборе формы, размеров и взаимного положения как самих электродов ИОС, так и отверстий в перфорированных электродах, при которых обеспечивается максимальная плотность ионного тока на обрабатываемой поверхности и высокая равномерность ее распределения по всей площади обработки при сохранении необходимой механической прочности сеточных электродов (отсутствии деформации и разрушения).
Интенсивность ионного потока и равномерность его по сечению определяются многими факторами, основными из которых являются:
интенсивность и равномерность плазмы в разрядной области ИИ, определяемые как типом и геометрией разрядной системы, так и рабочими параметрами: напряжением и током разряда, рабочим давлением и типом газа, формой и индукцией магнитного поля и др.;
тип и геометрия ИОС, формирующей ионный поток;
величина потенциалов на электродах ИОС;
давление в области обработки и расстояние от пластины до ИИ и др.
Первая группа параметров определяет конструкцию и рабочие характеристики разрядной системы ИИ, формирующей область плазмы определенной интенсивности с конкретным распределением плотности заряженных частиц. Проектирование ИОС сводится к выбору таких ее геометрических и рабочих параметров, при которых из плазмы осуществляется эффективный отбор ионов и формирование ионного потока максимально возможной интенсивности и равномерности с заданным энергетическим спектром.
Математическая модель должна позволять производить расчет и оптимизацию конструктивно-технологических параметров ИОС по критерию максимальной плотности и равномерности ионного пучка при известной для конкретного ИИ функции распределения ионов в плазме его разрядной камеры.
2.2 Моделирование системы травления
2.2.1 Конструктивная схема системы обработки
ИИ (рис. 2.1) состоит из герметичного корпуса, в котором смонтирована разрядная система, в простых конструкциях ионных источников состоящая из двух электродов: катода и анода. Для интенсификации разряда устанавливается магнитная система. Рабочий газ подается в ИИ через патрубок . На выходе ионного источника располагается ИОС, формирующая поток ионов требуемой конфигурации и плотности, направленный на обрабатываемую пластину.
При напуске в ИИ рабочего газа до определенного давления (обычно 1-0,1 Па) после предварительной вакуумной откачки и подачи между электродами ускоряющего напряжения (от нескольких сотен вольт до нескольких киловольт в зависимости от типа ионного источника) в источнике возбуждается плазма газового разряда, стимулируемая магнитным полем. Ионы плазмы вытягиваются из разрядной области ионного источника с помощью ИОС, которая формирует ионный поток требуемого сечения и плотности с заданной энергией ионов и направляет его на обрабатываемую поверхность.
2.2.2 Геометрическая модель иос
В общем случае поток ионов, формируемый многоапертурной ИОС, можно представить как суперпозицию множества пучков, выходящих из отверстий электродов. Тогда равномерность плотности потока ионов на обрабатываемой поверхности будет обеспечена, если полный ионный ток в каждом из единичных пучков и их сечения в плоскости обработки будут одинаковыми.
Формирование единичного ионного пучка элементарной ячейкой ИОС можно представить следующим образом (рис. 2.2). ИОС состоит из двух электродов: экранной сетки с отверстиями радиуса r1 и ускоряющей сетки с отверстиями радиуса r2. Экранная сетка обычно находится под положительным потенциалом, приблизительно равным потенциалу плазмы, и формирует границу плазмы на выходе ИИ, а к ускоряющей сетке прикладывают высокий отрицательный потенциал по отношению к экранной сетке.
П
Рис. 2.2.
ИОС можно представить как набор элементарных ячеек (рис. 2.2.), размещенных с постоянным шагом, но имеющих геометрические параметры (r1, r2, d), изменяющиеся в соответствии с законом распределения плотности ионов в разрядной камере ИИ таким образом, чтобы для каждой ячейки сохранялись постоянными ионный ток и сечение пучка в области обработки. В общем случае отверстия для симметричных систем удобно размешать по концентрическим окружностям, при этом необходимо стремиться к тому, чтобы суммарная площадь отверстий была максимально возможной, т.е. сетка должна обладать высокой "прозрачностью" для потока экстрагируемых ионов. С одной стороны, это обеспечивает высокую плотность сформированного ионного пучка, а с другой - уменьшает распыление сеток, которое может привести к их разрушению, а также к загрязнению обрабатываемой поверхности материалом сеток. Однако ограничивающим "прозрачность" сеток фактором является их механическая прочность, исключающая их деформацию и разрушение при монтаже и эксплуатации, которая зависит от используемых материалов, толщины сеток и размера перемычек между соседними отверстиями.
Тогда геометрическая модель ИОС будет иметь вид, представленный, на рис. 2.3. В результате моделирования профиль ускоряющей сетки будет иметь форму, отличную от плоской и зависящую от реальной функции распределения ионов на границе плазмы в ИИ. Постоянная площадь сечения пучков в плоскости обработки пластины характеризуется радиусом RП, расстояние между пучками выбирается постоянным и равно R (шаг размещения отверстий). Задается также расстояние до обрабатываемой поверхности L.
Рис. 2.3.
Используя построенную геометрическую модель и аналитические зависимости, отражающие физику процессов, можно получить математическую модель, связывающую геометрические и технологические параметры моделируемой ИОС при работе в составе ИИ с известной функцией распределения ионов на границе плазмы n(R). Перед построением модели необходимо классифицировать параметры, влияющие на работу ИОС.