
- •2.1 Теоретические сведения 28
- •Лабораторная работа № 1 Моделирование внутрикамерного устройства для процесса нанесения пленок с кольцеобразным источником материала
- •1.1 Теоретические сведения
- •1.1.1 Общие сведения о моделируемом объекте
- •1.1.2. Постановка задачи
- •1.1.3. Построение геометрической модели
- •1.1.4. Математическая модель процесса осаждения пленки
- •1.2 Лабораторное задание
- •1.2.1 Техническое оснащение
- •1.3 Методика выполнения работы
- •1.3.1 Требования к отчету
- •1.3.2 Инструкция по работе с программой «magna»
- •1.3.3 Контрольные вопросы
- •Лабораторная работа № 2 Моделирование системы ионного травления с ионным источником и ионно-оптической системой
- •2.1 Теоретические сведения
- •2.1.1 Общие сведения
- •2.1.2 Постановка задачи
- •2.2 Моделирование системы травления
- •2.2.1 Конструктивная схема системы обработки
- •2.2.2 Геометрическая модель иос
- •2.2.3 Классификация параметров иос
- •2.2.4 Математическая модель иос
- •2.3 Лабораторное задание
- •2.3.1 Техническое оснащение
- •2.4 Методика выполнения работы
- •2.4.1 Требования к отчету
- •2.4.2 Инструкция по работе с программой «ios»
- •2.4.3 Контрольные вопросы
- •Список литературы
1.1.2. Постановка задачи
Для проектирования внутрикамерных устройств УВН с МРС необходимо создать модели для расчета и оптимизации их конструктивных и технологических параметров. Основными этапами моделирования являются:
- выявление параметров, характеризующих конструкцию моделируемой системы и технологический процесс, реализуемый с помощью данной системы;
- построение геометрической модели проектируемого объекта;
- классификация параметров и определение взаимосвязи между ними на основе геометрической модели и физики процесса;
- построение математической модели, определяющей аналитические зависимости между параметрами, и выбор критериев оптимизации;
- разработка алгоритмов для реализации модели и составление пакета прикладных программ расчета и оптимизации конструктивно-технологических параметров по выбранным критериям;
- реализация проектируемой системы с помощью разработанного пакета прикладных программ в виде комплекта документации.
Задача оптимизации конструкции внутрикамерного устройства будет заключаться в выборе формы и размеров распыляемой поверхности и области локализованной плазмы, а также положения обрабатываемой пластины относительно распыляемой поверхности, при которых достигается максимальная (или заданная) равномерность осаждаемой на пластине пленки по толщине.
Более простыми для моделирования и в то же время широко применяемыми для практических целей являются внутрикамерные осесимметричные системы с кольцеобразными источниками материала, представляющие собой тела вращения.
Для создания полной модели внутрикамерного устройства и процесса осаждения пленки необходимо учитывать следующие факторы:
- эмиссионную характеристику распыляемой поверхности, характеризующую угловое распределение в пространстве распыленных атомов с каждой элементарной площадки;
- кинетику процесса переноса распыленных частиц в пространстве между распыляемой поверхностью и пластиной (поверхностью конденсации) в среде разреженного рабочего газа;
- условия конденсации распыленных атомов в заданной области поверхности пластины;
- форму и размеры распыляемой поверхности, определяемые геометрическими параметрами мишени и магнитной системы;
- условия локализации плазмы, определяемые параметрами магнитной системы и мишени и определяющие, в свою очередь, распределение плотности ионного тока по зоне распыления на мишени, характеризующего скорость эмиссии распыленных атомов с участков поверхности мишени;
- параметры разряда (напряжение, ток), определяющие энергию и плотность частиц, а следовательно, скорость распыления и осаждения атомов материала мишени;
- тип распыляемого материала и рабочего газа и др.
Наиболее сложным для моделирования является учет условий конденсации на пластине, зависящих от физико-химического состояния и температуры поверхности конденсации на пластине. В частности, учет миграции и отражения от поверхности конденсирующихся атомов представляет собой сложную аналитическую задачу, не имеющую адекватного решения. Не менее сложную задачу представляет расчет и моделирование магнитной системы, определяющей условия локализации плазмы, поскольку отсутствует методика расчета как сложных магнитных систем с приемлемой точностью, так и параметров плазмы в неоднородных скрещенных электрическом и магнитном полях. Поэтому учет вышеотмеченных факторов может быть осуществлен на основе эмпирических данных при введении ряда допущений, не нарушающих в целом адекватности модели.