
- •1.Физиология внутренней среды организма :
- •2.Физиолия крови а) функции, состав и физико-химические свойства крови:
- •3.Физиология крови а)состав, физико-химические свойства и функции белков плазмы крови:
- •4.Физиология эритроцитов а) функции эритроцитов, их количество:
- •Гранулоциты агранулоциты
- •6.Физиология тромбоцитов а) функции тромбоцитов, их количество:
- •7. Физиология внутренней среды организма а)физиологические основы образования тканевой жидкости и отёка тканей:
- •8. Защитные функции крови а) гуморальные факторы и клеточные механизмы неспецифической защиты организма:
- •11.Физиология крови а) хар-ка свёртывающей и антисвёртывающей систем крови:
- •14.Физиология сердца а) хар-ка автоматии сердца, её субстрат и происхождение:
- •14.Физиология сердца а) метод электрокардиографии, принципы анализа экг:
- •18.Физиология кровообращения а)ад, факторы его определяющие, виды ад, их нормативы и возрастные изменения:
- •20.Регуляция сердца а) хар-ка парасимп. Регуляции сердца.
- •21.Регуляция ад а) принципы регуляции ад направлены на поддержание:
- •22.Регуляция сосудистого тонуса а) хар-ка местной миогенной регуляции .
- •23.Регуляция сосудистого тонуса а) хар-ка нейрогенной регуляции сосудистого тонуса.
- •26.Физиология мозгового кровобращенияа) морфофункц. Хар-ка кровоснабжения г.М.
- •28.Физиология легочного кровообращения а) морфофункциональные особенности легочных сосудов.
- •29.Физиология почечного кровообращения а) морфофункциональная характеристика кровоснабжения почек.
- •30.Физиология кровоснабжения скелетных мышц и кожиа) функц-я хар-ка кровотока в скелетных мышцах.
11.Физиология крови а) хар-ка свёртывающей и антисвёртывающей систем крови:
Свёртывающая система крови состоит из плазменных факторов гемакоагуляции. которые последовательно активируясь, обеспечивают образование тромба, что необходимо для остановки кровотечения
Антисвёртывающая система крови играет важную роль в поддержании крови в жидком состоянии и препятствует распространению тромба за пределы повреждающего участка сосуда.
б) хар-ка эндогенных (естественных) антикоагулянтов:
Естественные антикоагулянты делят на первичные и вторичные. Первичные антикоагулянты всегда присутствуют в циркулирующей крови, вторичные - образуются в результате протеолитического расщепления факторов свертывания крови.
Первичные антикоагулянты(антитромбин III, гепарин, протеин С, протеин S, тромбомодулин, альфа2-Антиплазмин, альфа2-антитрипсин и тд)
К вторичным антикоагулянтам (Антитромбин I, Метафактор Vа, Метафактор XIа, фибринопептиды и тд) относят факторы свертывания крови и продукты деградации фибриногена и фибрина, обладающие мощным антиагрегационным и противосвертывающим действием, а также стимулирующие фибринолиз.
в) хар-ка внешнего и внутреннего механизмов фибринолиза:
Фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Ферментом, разрушающим фибрин, является плазмин
Фибринолиз, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза осуществляется при участии тканевого активатора плазминогена (ТАП) и урокиназы. Внутренний механизм активации фибринолиза делится на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый фибринолиз протекает под влиянием факторов XIIа, калликреина. Хагеман-независимый фибринолиз сводится к очищению сосудистого русла от нестабилизированного фибрина
г) хар-ка эндотелиальных, нервных и гуморальных механизмов гемостаза и фибринолиза:
Ускорение свертывания крови и усиление фибринолиза при всех его состояниях обусловлены повышением тонуса симп. части АНС и поступлением в кровоток адреналина и НА. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III , что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАП и урокиназа, приводящие к стимуляции фибринолиза
В случае повышения тонуса парасимпатической части АНС (раздражение блуждающего нерва, введение АХ) также наблюдаются ускорение свертывания крови и стимуляция фибринолиза. В этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов. Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка.
12.Физиология сердца а) хар-ка частотно-временных параметров нагнетательной функции сердца:
1. ЧСС = 60-80 в минуту
2. ритмичность сокращений(ровномерность интервалов между сокращениями)
3. фазы сердечного цикла
Сердечный цикл = систола + диастола (при ЧСС = 75. сердечный цикл = 0,8с) 60сек : 75 = 0,8с
б)фазы сердечного цикла:
Под сердечным циклом понимают период, охватывающий одно сокращение — систола, и одно расслабление — диастола предсердий и желудочков.
Период напряжения (0,08 с):
-Фаза асинхронного сокращения желудочков (0,05 с).
-Фаза изометрического сокращения (0,03 с.)
Период изгнания: (0,25 с):
- фазы быстрого (0,12 с) и фазы медленного изгнания (0,13 с).
Время от начала расслабления желудочков до захлопывания полулунных клапанов называется протодиастолическим периодом (0,04 с). Изометрическое расслабление (0,08 с).
Наполнения желудочков кровью, который длится 0,25 с.
К концу фазы медленного наполнения возникает систола предсердий. Предсердия нагнетают в желудочки дополнительное количество крови
в)характеристика объёмных параметров нагнетательной функции сердца:
Сердечный выброс:
1.систолический(ударный) объём крови = 60-100мл
2.минутный объём кровотока = ЧСС*СОК = 4,5-5,0 л/мин
3.сердечный индекс = МОК/площадь поверхности тела ~ 3 л/мин*м в квадрате
4.фракция выброса УОК/КДО*100%
13.Физиология сердца а) факторы движения крови по отделам сердца.
б) динамика кровяного давления в предсердиях и желудочках сердечного цикла.
в) роль клапанного аппарата сердца.
г) соотношение компонентов общего объема крови в желудочке сердца в покое и при физ. нагрузке.
Изменение минутного объема крови при работе. При мышечной работе отмечается значительное увеличение МОК до 25—30 л, что может быть обусловлено учащением сердечных сокращений и увеличением систолического объема за счет использования резервного объема. У нетренированных лиц МОК увеличивается обычно за счет учащения ритма сердечных сокращений. У тренированных при работе средней тяжести происходит увеличение систолического объема и гораздо меньшее, чем у нетренированных, учащение ритма сердечных сокращений. В случае очень тяжелой работы, например при требующих огромного мышечного напряжения спортивных соревнованиях, даже у хорошо тренированных спортсменов наряду с увеличением систолического объема отмечается учащение сердечных сокращений, а следовательно, и увеличение кровоснабжения работающих мышц, в результате чего создаются условия, обеспечивающие большую работоспособность. Число сердечных сокращений у тренированных может достигать при большой нагрузке 200—220 в минуту.
Клапаны сердца
Эффективная насосная функция сердца зависит от однонаправленного движения крови из вен в предсердия и далее в желудочки, создаваемого четырьмя клапанами (на входе и выходе обоих желудочков, рис. 23–1). Все клапаны (предсердно-желудочковые и полулунные) закрываются и открываются пассивно.
· Предсердно–желудочковые клапаны — трёхстворчатый клапан в правом желудочке и двустворчатый (митральный) клапан в левом — препятствуют обратному поступлению крови из желудочков в предсердия. Клапаны закрываются при градиенте давления, направленном в сторону предсердий, — т.е. когда давление в желудочках превышает давление в предсердиях. Когда же давление в предсердиях становится выше давления в желудочках, клапаны открываются.
От свободных краёв предсердно-желудочковых (АВ-) клапанов отходят сухожильные хорды (chordae tendineae), представляющие собой соединительнотканные тяжи. Прикрепляются сухожильные хорды к сосочковыми мышцами миокарда желудочков. При сокращении миокарда сокращаются и сосочковые мышцы, что не позволяет створкам клапанов выпячиваться в сторону предсердий в систолу желудочков. Вполне естественно, что при местном нарушении кровообращения миокарда вследствие недостаточного обеспечения кислородом и питательными веществами (обычно при инфаркте или приступе стенокардии) нарушается его сократительная способность. Ишемия миокарда сосочковых мышц приводит к выпячиванию створок в предсердия — створки клапанов расходятся и кровь затекает обратно в предсердия, что клинически проявляется систолическим шумом недостаточности митрального или (гораздо реже) трикуспидального клапана во время приступа стенокардии или при инфаркте миокарда.
Полулунные клапаны — аортальный клапан и клапан лёгочной артерии — расположены на выходе из левого и правого желудочков соответственно. Они предотвращают возврат крови из артериальной системы в полости желудочков. Оба клапана представлены тремя плотными, но очень гибкими «кармашками», имеющими полулунную форму и прикреплёнными симметрично вокруг клапанного кольца. «Кармашки» открыты в просвет аорты или лёгочного ствола, поэтому когда давление в этих крупных сосудах начинает превышать давление в желудочках (т.е. когда последние начинают расслабляться в конце систолы), «кармашки» расправляются кровью, заполняющей их под давлением, и плотно смыкаются по своим свободным краям — клапан захлопывется (закрывается).
a Механизм действия аортальных клапанов и клапанов лёгочной артерии отличается от функционирования АВ-клапанов следующими особенностями.
U Высокое давление в артериях в конце систолы заставляет полулунные клапаны резко захлопываться, в отличие от более постепенного («лёгкого») смыкания АВ-клапанов.
U Через узкое отверстие полулунных клапанов скорость изгоняемой крови намного выше, чем через большие предсердно-желудочковые отверстия.
U Высокая скорость закрытия и быстрый выброс крови подвергают края полулунных клапанов большему механическому воздействию, чем края АВ-клапанов.
U Наконец, АВ-клапаны поддерживаются сухожильными хордами, отсутствующие у полулунных клапанах.
a В основание створок аортального клапана (практически в полость «кармашков») открываются устья венечных артерий. Кровь в эти артерии поступает во время диастолы, когда давление в аорте превышает давление в левом желудочке и створки полулунных клапанов расправлены и сомкнуты. Соответственно, когда створки этих клапанов не смыкаются (например, вследствие деформации их свободных краёв, что служит одной из причин недостаточности аортального клапана), страдает коронарный кровоток, что в итоге вносит свой вклад в возникновение выраженной стенокардии напряжении, очень типичной для аортальной недостаточности.