
- •Изменчивость как фактор эволюции. Фенотипическая изменчивость и ее составляющие. Классификация явлений изменчивости.
- •Жизненный цикл клетки. Стадии митоза, их продолжительность и характеристика. Судьба клеточных органелл в процессе деления клетки.
- •Геоэкологические аспекты урбанизации.
- •Антропогенное изменения климата и его последствия. Стратегии, связанные с изменением климата на планете. Особенности трудовой деятельности в различных климатических условиях.
- •Динамика сообществ во времени. Первичные и вторичные сукцессии. Изменения видового разнообразия в ходе сукцессии.
- •Задачи объяснения и прогнозирования в экологических исследованиях. Описание сложной системы: морфологическое, функциональное и информационное.
- •Эпителиальные ткани. Общая характеристика и классификации. Однослойный эпителий. Строение и функции. Гистогенез и регенерации эпителиальных тканей.
- •Распространение химических элементов в геосферах Земли. Классификация элементов по распространенности, закон Вернадского.
- •Размножение растений. Типы размножения. Вегетативное размножение. Бесполое размножение спорами. Половое воспроизведение высших растений. Семенное размножение высших растений.
- •Аминокислоты. Их строение и классификация. Обмен аминокислот. Цикл мочевины и его биологическое значение.
- •Трофические и топические связи. Мутуализм. Комменсализм, нейтрализм, аменсализм, паразитизм и хищничество, конкуренция.
- •Строение ферментов. Номенклатура ферментов. Активный центр и его функциональные участки (каталитический и якорный). Простые и сложные ферменты.
- •Углеводы, их биологическая роль, классификация и номенклатура. Основные представители углеводов. Основные пути обмена углеводов. Гликолиз и глюконеогенез
63.Эндоплазматическая сеть. Общая характеристика. Гранулярная эндоплазматическая сеть - строение и основная роль. Рибосомы, их структура и роль в синтезе белка. Синтез белков в гиалоплазме. Связь гранулярной эндоплазматической сети с ядерной оболочкой.
Эндоплазматический ретикулум или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев. Площадь мембран ЭПР более половины общей площади всех мембран клетки. Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое, полости ЭПР открываются в межмембранную полость ядерной оболочки. Мембраны ЭПР обеспечивают активный транспорт ряда элементов против градиента концентрации. ЭПР подвержен частым изменениям. Выделяют два вида ЭПР: гранулярный; агранулярный (гладкий) ЭПР. На поверхности гранулярного ЭПР находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР. Функции агранулярного ЭПР: участвует во многих процессах метаболизма, играет важную роль в углеводном обмене, нейтрализации ядов и запасании кальция. Ферменты агранулярного ЭПР участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный ЭПР. Синтез гормонов, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Много в клетках яичек и яичников, ответственные за синтез гормонов.
Накопление и преобразование углеводов: углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови. Нейтрализация ядов: Гладкий ЭПР клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют к молекулам токсичных веществ гидрофильные радикалы, в результате чего повышается растворимость токсичных веществ в крови и моче, и они быстрее выводятся из организма. В случае непрерывного поступления ядов, медикаментов или алкоголя образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.
Роль ЭПС как депо кальция: Под действием инозитолтрифосфата и некоторых других стимулов кальций высвобождается из ЭПС путем облегченной диффузии. Возврат кальция в ЭПС обеспечивается активным транспортом. При этом мембрана ЭПС обеспечивает активный перенос ионов кальция против градиентов концентрации больших порядков. И приём, и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи с физиологическими условиями. Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как активация или инактивация ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток иммунной системы.
Функции гранулярного ЭПР: Синтез белков Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного ЭПР (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль. Синтез мембран: Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.
Рибосома —немембранный органоид живой клетки сферической или слегка эллипсоидной формы, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией. В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке. Полная прокариотическая рибосома имеет коэффициент седиментации 70S (мера массы макромолекул. Его находят, измеряя скорость осаждения молекул в центробежном поле.) и диссоциирует на две субъединицы: 50S и 30S. Полная эукариотическая рибосома с коэффициентом седиментации 80S диссоциирует на субъединицы 60S и 40S.
Изменчивость как фактор эволюции. Фенотипическая изменчивость и ее составляющие. Классификация явлений изменчивости.
В основе изменчивости как всеобщего явления живой природы лежит конвариантная редупликация. Именно в процессе матричного копирования ДНК и РНК происходят ошибки последовательности расположения нуклеотидов, связанные с заменой одного нуклеотида другим или сдвигом рамок считывания. Эти процессы лежат в основе изменчивости на молекулярном уровне. Общие причины генетической изменчивости чрезвычайно разнообразны.
Во времена Ч. Дарвина всю наблюдаемую изменчивость делили на наследственную и ненаследственную. В настоящее время такое разделение правильно лишь в общих чертах. Ненаследственных признаков нет и быть не может: все признаки и свойства организма в той или иной степени наследственно обусловлены. В процессе размножения от поколения к поколению передаются не признаки, а код наследственной информации, определяющий лишь возможность развития
будущих признаков в каком то диапазоне. Наследуется не признак, а норма реакции развивающейся особи на действие внешней среды.
Вся наблюдаемая изменчивость какого-либо признака или свойства в пределах нормы реакции называется фенотипической. Фенотип — совокупность всех внутренних и внешних структур и функций данной особи, развивающаяся как один из возможных вариантов реализации нормы реакции в определенных условиях. В общей фенотипической изменчивости популяции могут быть выделены две доли: генотипическая, или наследственная, и паратипическая, вызванная внешними условиями. Доля общей изменчивости, которая определяется генотипическими различиями между особями по данному признаку, характеризует наследуемость этого признака.
Жизненный цикл клетки. Стадии митоза, их продолжительность и характеристика. Судьба клеточных органелл в процессе деления клетки.
Жизненный цикл— это время существования клетки от момента ее образования путем деления материнской клетки до собственного деления или естественной гибели.
У клеток сложного организма (например, человека) жизненный цикл клетки может быть различным. Высокоспециализированные клетки (эритроциты, нервные клетки, клетки поперечно-полосатой мускулатуры) не размножаются. Их жизненный цикл состоит из рождения, выполнения предназначенных функций, гибели (гетерокаталитической интерфазы).
Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом, которые приобретают вид плотных нитчатых структур. Эти нитчатые хромосомы переносятся в дочерние клетки специальной структурой - веретеном деления. Такой тип деления эукариотических клеток - митоз (от греч. mitos - нити), или кариокинез, или непрямое деление - является единственным полноценным способом увеличения числа клеток. Прямое деление клеток, или амитоз, достоверно описано только при делении полиплоидых макронуклеусов инфузорий, их микронуклеусы делятся только митотическим путем.
Основные стадии митоза.
1. Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90 % информации эукариотической клетки.
2. Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).
Фазы клеточного цикла:
1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;
2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.
В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);
3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).
S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период – препрофазу.
Процесс митотического деления клеток принято подразделять на несколько основных фаз: профаза, прометафаза, метафаза, анафаза, телофаза. Границы между этими фазами установить точно очень трудно, потому что сам митоз представляет собой непрерывный процесс и смена фаз происходит очень постепенно: одна их них незаметно переходит в другую. Единственная фаза, которая имеет реальное начало, это анафаза — начало движения хромосом к полюсам. Длительность отдельных фаз митоза различна, наиболее короткая по времени анафаза.
Профаза. Уже в конце G2-псриода в клетке начинают происходить значительные перестройки. Точно определить, когда наступает профаза невозможно. Лучшим критерием для начала этой фазы митоза может служить появление в ядрах нитчатых структур – митотических хромосом. Этому событию предшествует повышение активности фосфорилаз, модифицирующих гистоны, в первую очередь, гистон H1. В профазе сестринские хроматиды связаны друг с другом бок о бок с помощью белков-когезинов, которые образуют эти связи еще в S-периоде, во время удвоения хромосом. К поздней профазе связь между сестринскими хроматидами сохраняется только в зоне кинетохоров. В профазных хромосомах уже можно наблюдать зрелые кинетохоры. которые не имеют никаких связей с микротрубочками. Конденсация хромосом в профазном ядре совпадает с резким уменьшением транскрипционной активности полностью исчезает к середине профазы. В
PHК и конденсацией хроматина происходит инактивация и ядрышвых генов. При этом отдельные фибриллярные центры сливаются так что превращаются в ядрышкобразующие участки хромосом, в ядрышковые организаторы. Присходит фосфорилирование белков ядерной оболочки, которая распадается. Активация клеточных центров. В начале разбираются микротрубочки цитоплазмы и начинается рост микротрубочек вокруг удвоившихся диплосом. Микротрубочки в этой фазе еще менее стабильны. Центросомы – будущие полюсы веретена деления начинают расходится. Дезорганизация ЭПР (распадается на мелкие вакуоли) и аппарата Гольджи (разделяется на отдельные диктиосомы).
Прометафаза. После разрушения ядерной оболочки митотические хромосомы без особого порядка лежат в зоне бывшего ядра. В промегафазе начинаются их движение и перемещение с участием микротрубочек, которые в конечном итоге приводят к образованию экваториальной хромосомной «пластинки», к упорядоченному расположению хромосом в центральной части веретена уже в метафазе. В прометафазе наблюдается постоянное движение хромосом, или метакинез, при котором они то приближаются к полюсам, то уходят от них к центру веретена, пока не займут среднее положение, характерное для метафазы (конгрессия хромосом).
Метафаза. Не смотря на стабилизацию пучков микротрубочек продолжается их постоянное обновление за счет сборки и разборки тубулинов. Хромосомы располагаются так, что их кинетохоры обращены к противоположным полюсам. К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи параллельны, между ними видна щель. Центромера – последнее место, где контакт между хроматидами сохряняется вплоть до конца метафазы.
Анафаза начинается с разъединения всех хромосом в центромерных участках. В это время происходит одновременная деградация центромерных когезинов, которые связывали до этого времени сестринские хроматиды. Такое одновременное отделение хроматид позволяет начать их синхронное расхождение. Хромосомы все вдруг теряют центромерные связки и синхронно начинают удаляться друг от друга по направлению к противоположным полякам веретена. Скорость движения хромосом равномерная. Анафаза занимает несколько процентов от всего времени митоза, но за это время происходит целый ряд событий. Главными из них являются сегрегация двух идентичных наборов хромосом и транспорт их в противоположные концы клетки.
При движении хромосомы меняют свою ориентацию и часто принимают V-образную форму. Вершина их направлена в сторону полюсов деления, а плечи как бы откинуты к центру веретена.
Расхождение хромосом слагается из двух процессов: 1 - расхождение хромосом за счет укорачивания кинетохорных пучков микротрубочек: 2 - расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек. Первый из этих процессов носит название «анафаза А». второй — «анафаза В». Их последовательность и вклад могут различаться у разных объектов. У млекопитающих практически одновременно. В растительных клетках стадии В нет.
Телофаза начинается с остановки хромосом (ранняя телофаза - поздняя анафаза) и кончается началом реконструкции нового интерфазного ядра (ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки - к полюсу, теломерные - к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы начинает строиться новая ядерная оболочка, которая раньше всего образуется на латеральных поверхностях хромосом и позже - в центромерных и теломерных участках. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в G1-период новой интерфазы. В телофазе начинается и заканчивается процесс разрушения митотического аппарата – разборка микротрубочек. Он идет от полюсов к экватору бывшей клетки: именно в средней части веретена микротрубочки сохраняются дольше всего (остаточное тельце). Одно из главных событий телофазы - разделение клеточного тела. т.е. цитотомия, или цитокинез. У растений деление клетки происходит путем внутриклеточного образования клеточной перегородки, а у клеток животных - путем перетяжки, впячивания плазматической мембраны внутрь клетки.
После цитотомии две дочерние клетки переходят стадию G1 клеточного периода. Возобновляются цитоплазматические синтезы, диктиосомы АГ снова конденсируются в околоядерной зоне. От центросомы начинается отрастание микротрубочек и восстановление интерфазного цитоскелета.