Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Моделирование систем Теория.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
3.58 Mб
Скачать
      1. Модели обслуживания вычислительных задач

При наличии пла­на организации вычислительного процесса основная проблема за­ключается в обслуживании заявки, которое характеризуется време­нем пребывания заявки в системе. Это время складывается из времени ожидания в очереди и времени обслуживания, представ­ляющего собой время обработки информации процессором на ос­нове принятой программы. Анализ процесса обслуживания заявки может быть выполнен на основе теории массового обслуживания. Тогда вычислительная система может быть представлена математи­ческой моделью системы массового обслуживания, которая харак­теризуется числом обслуживающих приборов, т. е. ЭВМ, дисципли­ной образования очереди, числом вычислительных задач в ИВЗ, дисциплиной обслуживания очереди с помощью диспетчера Д2.

В зависимости от того, какое число ЭВМ используется, различают одно- и многолинейные системы. Даже для многолинейной системы может наблюдаться случай, когда все обслуживающие приборы, т. е. ЭВМ, будут заняты. Тогда модель системы может предпола­гать такой поток заявок, который не ждет обслуживания, и возника­ет система с потерями. Физически это возможно либо когда очередь не предусматривается, либо когда имеется полное заполнение оче­реди.

Другая модель системы характеризуется тем, что заявка на решение вычислительной задачи, поступившая в вычислительную систему, может ожидать и покидает ее только после полного об­служивания. В реальных вычислительных системах это оказывается возможным благодаря тому, что предусматриваются очереди O1N. Так как очередь не может быть не ограниченной, то данная система характеризуется числом заявок, ожидающих начала обслуживания. Возможны дополнительные ограничения на время ожидания, на время пребывания заявки в вычислительной системе и др. Существенное влияние как на параметры обслуживающей системы, так и на процесс ее анализа оказывает характер входящего потока заявок. Заявки от ИВЗ образуют во времени поток, который может иметь ограниченное или неограниченное число задач. Раз­личными могут быть и правила обслуживания заявок, находящихся в очереди. В соответствии с этим устанавливается некоторая дис­циплина обслуживания диспетчером Д2. Естественной дисциплиной является дисциплина «первым пришел — первым обслужен». Воз­можен инверсный подход: «последним пришел — первым обслу­жен». Допускаются и случайные дисциплины обслуживания, когда заявки из очереди выбираются в произвольном порядке. В ряде случаев заявки обладают приоритетами. Это наиболее характерно для реальных задач ИС, в которых имеются информационные взаимосвязи. Тогда заявки имеют разную степень важности повремени исполнения и каждой заявке присваивается некоторый приоритетный индекс. Заявка с меньшим индексом имеет наиболь­ший приоритет. Для приоритетного обслуживания различают дис­циплины абсолютного, относительного и смешанного приоритетов, абсолютный предполагает прерывание обслуживания заявки при поступлении более приоритетной. При относительном приоритете обслуживание заявки продолжается, а после его завершения на обслуживание принимается поступившая приоритетная заявка, т. е. прерывание обслуживания не допускается. При смешанном приори­тете ЭВМ выбирает либо новую заявку, либо продолжает обслужи­вание предыдущей заявки. Критерием выбора может служить время обслуживания заявки.

В теории массового обслуживания под временем обслуживания понимают время, которое затрачивается на обслуживание одной заявки конкретным обслуживающим прибором (ЭВМ). В общем случае время обслуживания характеризуется определенным законом распределения F(t)=P(to6c<t), где Р(to6c<t) — вероятность того, что время обслуживания to6c<t. При to6c≤0 F(t)=0. В зависимости от закона распределения заявки на решение вычислительные задачи могут быть разделены на типы. В рамках одного и того же закона распределения заявки можно различать по среднему времени об­служивания. Время обслуживания реальной заявки на ЭВМ опреде­ляется числом операций, входящих в программу. Существенное влияние на это время оказывает и разветвленность программы. Для слабо разветвленных программ число выполняемых операций прак­тически для каждой задачи одинаково и может быть использована модель с постоянным временем обслуживания. При значительной разветвленной программы в зависимости от типа заявки ее ре­ализация может пойти по разным направлениям, время выполнения программы будет случайной величиной, т. е. реализуется модель с переменным временем обслуживания. Поведение вычислительной системы во времени может быть описано на основе исследования марковского процесса. Тогда удается оценить характеристики си­стемы массового обслуживания аналитическим путем.

Состояние системы массового обслуживания в некоторый мо­мент времени t определяется числом находящихся в ней заявок N(t), где N(t) — это случайная величина, во времени N(t) отображает слу­чайный процесс с дискретными состояниями. Положим, что система находится в состоянии k, если в ней имеется k заявок. Вероятность такого состояния обозначим Pk(t)=P[N(t)=k]. Для любого момента времени t . Переход из состояния i в состояние j опишем с помощью вероятности Pij(t1,t2), если в момент t1 система находилась в состоянии i, а к моменту t2 переходит в состояние j.

При t2-t1=∆t и t→0 Pij(∆t)fijt, где , где fij — плотность вероятности перехода. Рассмотрим последовательность переходов системы из состояния в состояние, пользуясь понятием Марковской цепи. Выберем интервал U в пределах t1<U<t2.

Тогда

где N — максимальное число заявок в системе. Полагая t1=0, U=t, t2=t+, >0, получим

.

Можно составить систему таких уравнений для определенна вероятностей Рk(t).

Процесс обработки может быть описан такими параметрами, как среднее время поступления и обслуживания заявок, характер распределения этих случайных величин относительно средних значе­ний. Типовые варианты анализа системы могут быть получены для отдельных входных потоков заявок и определенных законов време­ни обслуживания в системе. В большинстве случаев анализ прово­дят для стационарного режима работы системы массового обслу­живания, при котором вероятности нахождения системы в опреде­ленных состояниях не зависят от времени. Рассмотрим отдельные наиболее характерные модели обслуживания.

Экспоненциальный закон времени обслуживания про­стейшего потока заявок. Простейшим называют стационарный ординарный поток без последействия. Обозначим параметр потока, т. е. интенсивность заявок, через , =const. Простейший поток описывается распределением Пуассона, в соответствии с которым вероятность возникновения k заявок за время t составляет

,

где — интенсивность потока заявок, т. е. количество заявок, по­ступающих за единицу времени.

Среднее число заявок или матема­тическое ожидание числа заявок за время t определяется как

.

Соответственно дисперсия числа заявок за время t

.

Особенностью простейшего потока является то, что при объединении независимых простейших потоков с параметрами 1, 2 воз­никает суммарный простейший поток с параметром (1+2).

Это обстоятельство позволило широко применять простейший поток в прикладных исследованиях. Такая модель хорошо описывает мно­гие потоки заявок вычислительных задач, которые возникают в ре­альных условиях эксплуатации.

Экспоненциальному закону распределения времени обслужива­ния соответствует плотность распределения вероятности b(t)=e-t, где — интенсивность обслуживания; здесь Тобс — среднее время обслуживания одной заявки. Для составления уравнений, описывающих поведение системы массового обслужива­ния, рассмотрим граф переходов цепи Маркова для данной модели. На рис. 53 представлен размеченный граф состояний однолиней­ной системы обслуживания с очередью.

Отсутствие заявок соответ­ствует узлу 0, максимальное число заявок отображается узлом N. На дугах графа указаны плотности вероятности перехода системы из одного состояния в другое. При анализе процесса обработки необходимо установить вероятности состояний Рk(t), для этого необходимо составить N+1 линейных дифференциальных уравне­ний с постоянными коэффициентами. Структура уравнений оди­накова: левая часть представляет собой производную вероятности состояния, а правая — включает члены, равные произведению пло­тности вероятности перехода на вероятность того состояния, из которого совершается переход. Число членов в правой части соот­ветствует числу стрелок, входящих и исходящих из рассматрива­емого состояния. Члены, соответствующие исходящим стрелкам, берутся со знаком минус, а соответствующие входящим — со зна­ком плюс. В общем виде уравнение, описывающее k-е состояние системы, может быть представлено как

В соответствии с рассмотренным графом для однолинейной системы обслуживания с очередью получаем следующую систему дифференциальных уравнений:

.

Условие нормировки вероятностей имеет вид

Для стационарного режима рассмотренная система дифференциальных уравнений превращается в систему алгебраических уравне­ний вида:

.

Из полученной системы алгебраических уравнений нетрудно найти вероятность отсутствия заявок на решение вычислительных задач

.

Вероятность существования в системе k заявок, из которых одна обслуживается ЭВМ, а остальные находятся в очереди, составит

.

При k>N вероятность k-го состояния Рk=0. Это соответствует случаю переполнения системы, т. е. в очереди имеется N-1 заявок и одна заявка обслуживается ЭВМ (рис. 54). Таким образом, при полной загрузке системы, т. е. наличии в ней N заявок, вновь поступившее требование получает отказ. Поэтому полезно перейти к многолинейному обслуживанию, когда используется N обслужи­вающих приборов (ЭВМ).

Экспоненциальный закон времени обслуживания с по­терями простейшего потока заявок при S обслуживаю­щих приборах. В этом варианте вычислительная система не имеет возможности хранить очередь, поэтому заявки непосредственно через диспетчера Д2 поступают на одну из S ЭВМ. Число заявок не может превышать 5, поэтому в случае загрузки всех ЭВМ вновь поступающее требование теряется, так как очередь не предусмотрена, а на обслуживание оно не может быть принято. Граф переходов S обслуживающей системы представлен на рис. 55, где в узлах графа указаны состояния «0, 1, ..., S» — по числу заявок в системе, а дуги размечены плотностями вероятностей переходов из одного состояния в другое.

Исходя из этого графа, для установившегося режима запишем алгебраическую систему уравнений в виде

Условие нормировки вероятностей имеет вид . Решая данную систему уравнений, найдем вероятность пребывания вычис­лительной системы в kсостоянии:

При анализе процесса обработки весьма важно определить веро­ятность потери заявки на решение вычислительной задачи. Потеря заявки имеет место, если заявка поступает в вычислительную систему находящуюся в состоянии S, поэтому

.

Выражение для вероятности Рk известно в литературе как формула потерь Эрланга. Вероятность отсутствия заявок в системе

Отметим, что вероятность потери заявки может быть умень­шена за счет увеличения интенсивности обслуживания и числа обслуживающих приборов S.

Для любой системы весьма важным показателем является загрузка , которая показывает среднее число заявок, поступающих в вычислительную систему за среднее время об­служивания одной заявки одной ЭВМ. Стационарный режим имеет место в системе, если <S. Наиболее распространенным вариантом реализации вычислительной системы является много­линейное обслуживание с очередью, к рассмотрению которого и перейдем.

Экспоненциальный закон времени обслуживания про­стейшего потока заявок при S обслуживающих приборах. В этом варианте обслуживания вычислительная система включает S обслуживающих приборов (ЭВМ) и имеет очередь для поступа­ющих заявок с числом мест L. При наличии хотя бы одной свобод­ной ЭВМ поступившая заявка сразу принимается на обслуживание. Если все ЭВМ заняты, то она становится в очередь. Естественной дисциплиной обслуживания является «первым пришел — первым обслужен». По числу заявок система может иметь состояния: «0,1, .... S+L». Граф переходов системы представлен на рис. 56.

В узлах графа, как и ранее, указаны состояния, дуги графа размечены плот­ностями вероятностей переходов. На основании представленного графа запишем алгебраическую систему уравнений оценки вероят­ностей состояний системы для установившегося режима:

.

Условие нормировки вероятностей имеет вид

Решая систему уравнений, определим вероятность нахождения вычислительной системы в k-м состоянии

.

Соответственно вероятность состояния (S+n)

,

где вероятность отсутствия заявок в вычислительной системе

.

Отказ в приеме на обслуживание заявки возникает в случае, когда заняты все ЭВМ и в очереди находится L заявок, т. е.

.

Вероятность потерь из-за отказа в обслуживании уменьшается с увеличением длины очереди и особенно сильно с увеличением числа обслуживающих приборов. При наблюдается умень­шение вероятности потерь на несколько порядков, с приближением к единице это снижение становится менее существенным и на­ходится в пределах одного порядка. Наличие очереди в системе позволяет снизить потери из-за отказа в обслуживании, но вызыва­ет необходимость ожидания заявки в очереди перед началом об­служивания.

Организация очереди в вычислительной системе требует знания ее средней длины. Установим эту величину из условия, что очередь возникает, когда заняты все обслуживающие приборы и в системе имеет место количество заявок от S+1 до S+L. Поэтому

.

Подставляя соответствующие значения вероятностей Pk получим

.

При организации вычислительного процесса существенное значение имеет момент запуска и выпуска решаемой вычислительной задачи, поэтому весьма важно знать время пребывания заявки в очереди (время ожидания Tож). Потери в эффективности решения вычислительной задачи возникают в случае, когда время ожидания превышает заданное время t, следовательно, необходимо оценить вероятность того, что время ожидания в очереди будет больше некоторого фиксированного значения t. Тогда

.

В этом выражении первая сумма включает вероятности состоя­ний обслуживающей системы от S до S+L, а вторая сумма — веро­ятности обслуживания от 0 до r заявок с помощью S обслужива­ющих приборов за время t. Среднее время ожидания

.

Для процесса обработки критическим может оказаться общее время пребывания заявки в вычислительной системе. Среднее значе­ние времени пребывания требования в системе складывается из среднего значения времени ожидания и среднего значения времени обслуживания:

.

Из приведенных выше соотношений могут быть получены конеч­ные выражения для однолинейной системы с ограниченной очере­дью. Подставляя S=1, находим

.

Потери заявок возникают с вероятностью

.

Соответственно среднее время пребывания заявки в вычисли­тельной системе составит

Теория массового обслуживания позволяет получить аналити­ческие выражения для оценки характеристик вычислительной систе­мы при различных потоках заявок, отдельных законах обслужива­ния, наличии абсолютных и относительных приоритетов. Таким образом, модель обработки данных базируется на процессе об­служивания заявок по решению вычислительных задач. Модель обслуживания разрешается аналитическим либо имитационным ме­тодом на основе теории массового обслуживания. Однако для реальных задач управления необходимо решение вычислительных задач во временной последовательности, зависящей от требования производственного процесса. Стратегия обработки информации в автоматизированных системах должна исходить из того, что для каждой вычислительной задачи существует наиболее благоприятное время ее решения, что приводит к необходимости определения оптимального плана организации вычислительного процесса. Зада­ча может в виде заявки обращаться в вычислительную систему в произвольный момент времени, однако возможности для ее решения должны определяться в соответствии с разработанным планом вычислительного процесса. Поэтому составной частью модели об­работки данных является модель планирования вычислительных работ в системе.