
- •1. Понятие информации
- •2. Аспекты информации
- •3. Данные и их представление
- •4. Информационные технологии (ит): понятие, цели и особенности
- •5. Виды информационных технологий: ит обработки данных
- •6. Виды информационных технологий: ит управления.
- •7. Виды информационных технологий: ит автоматизированного офиса.
- •8. Виды информационных технологий: ит поддержки принятия решений.
- •9. Технологический процесс обработки данных. Сетевой и пакетный режимы обработки.
- •10. Технологический процесс обработки данных. Диалоговый и интерактивный режимы обработки.
- •11. Пользовательский интерфейс информационных технологий. Основные компоненты, свойства. Дружественный интерфейс. Согласование интерфейса.
- •12. Распределенные системы обработки данных. Понятие, преимущества. Способы обработки.
- •13. Централизованная организация данных. Децентрализованная организация данных способом распределения.
- •14. Децентрализованная организация данных способом дублирования. Смешанная организация данных.
- •15. Характеристика технологии «клиент-сервер».
- •16. Основные виды технологии распределенной обработки данных
- •2. Технология клиент-сервер, ориентированная на централизованное распределение.
- •3. Технология клиент-сервер, ориентированная на локальную вычислительную сеть.
- •4. Технология клиент-сервер, ориентированная на изменения данных в одном месте.
- •5. Технология клиент-сервер, ориентированная на измерение данных в нескольких местах.
- •6. Технология клиент-сервер, ориентированная на распределенную субд.
- •17. Защита информации. Несимметричное шифрование информации
- •18. Защита информации. Принцип достаточности защиты
- •19. Типы компьютерных вирусов
- •20. Антивирусы.
- •21. Программные средства информационных технологий. Жизненный цикл программного обеспечения
- •1. Понятие системы, понятие информационной системы. Функции системы. Количественное измерение информации. Основные свойства и компоненты системы.
- •2. Структура системы. Виды структур. Содержание и строение системы. Форма системы. Компоненты и элементы системы.
- •3. Состояние системы. Поведение системы. Равновесие и устойчивость системы. Задачи управления системой. Устойчивость и управляемость системы.
- •4. Обратная связь. Положительная и отрицательная обратная связь. Применение положительной и отрицательной обратной связи в технических системах.
- •5. Качественные методы описания систем. Мозговая атака и метод экспертных оценок, метод сценариев и метод «Дельфи», метод дерева целей, морфологические методы.
- •6. Количественные методы описания систем.
- •7. Задачи анализа и синтеза систем. Анализ и синтез в проектировании систем.
- •8. Декомпозиция систем. Основные варианты декомпозиции систем. Декомпозиция систем в их проектировании.
- •9. Теоретико-множественное описание систем. Вход и выход системы. Способы задания множества входов системы и множества ее выходов.
- •10. Кибернетический подход к описанию систем. Система управления, ее компоненты и функции. Информационные потоки в системе управления. Процесс управления как информационный процесс
- •11. Информационная система, ее основные компоненты и разновидности. Назначение и способы реализации. Формальное описание информационной системы
- •1. Компьютерная графика. Современное состояние
- •2. Компьютерная графика. Библиотека OpenGl. Возможность визуализации в несколько окон приложения
- •3. Компьютерная графика. Библиотека OpenGl. Возможность визуализации в несколько окон вывода в одном окне приложения
- •4. Компьютерная графика. Анимация средствами библиотеки OpenGl
- •5. Компьютерная графика. Обеспечение работы приложений в реальном времени средствами библиотеки OpenGl
- •6. Компьютерная графика. Создание цикла обработки сообщений в приложении средствами библиотеки OpenGl
- •7. Компьютерная графика. Библиотека OpenCv. Современное состояние и направления развития
- •1. Цифровое представление графической информации. Источники оцифрованных изображений. Оцифровка аналоговых изображений. Дискретизация и квантование. Примеры источников оцифрованных изображений.
- •2. Векторная (контурная) и точечная (растровая) компьютерная графика. Пикселы и разрешение. Понятие линиатуры и качество воспроизведения графических изображений на различных носителях.
- •3. Шрифт и компьютерная работа с ним. Шрифтовые гарнитуры и их классификация. Компьютерное представление шрифтов. Типы компьютерных шрифтов.
- •4, Цветовые модели. Модели rgb, hsb, hsl, Lab и cmyk. Глубина цвета. Цветовые профили.
- •5. Управление цветами. Цветоделение и методы и средства его реализации.
- •6. Цвета монитора и принтера. Цветовые профили в цепи средств обработки информации. Калибровка отдельных устройств и всего тракта передачи графической информации.
- •7. Общая структура и организация растровых и векторных файлов. Методы представления графической информации внутри файла. Преобразование форматов. Технология внедрение растровых объектов.
- •8. Форматы графических файлов. Bmp, tiff, jpeg и другие форматы. Характеристики и применение различных форматов.
- •9. Организация описания данных в векторных файлах.
- •10. Использование графических изображений в электронных и мультимедиа изданиях. Изображения как средство навигации.
- •11. Методы анимации и форматы анимационных gif-файлов.
- •1. Протоколы физические, транспортные и программные. Место в этой модели стека протоколов tcp/ip. Его роль в интернет-технологии.
- •4 Движка браузеров:
- •3. Применение текста и шрифтов на сайтах. Задание параметров текста с использованием тегов и атрибутов тегов html и с использованием свойств css.
- •4. Графические изображения на веб-страницах. Графические форматы gif, jpeg и png, их параметры, характеристики, различия и области применения. Методы оптимизации графики в форматах gif и jpeg.
- •5. Структура html-документа. Определение типа документа. Различия версий html 4.0 и xhtml 1.0. Раздел head, его структура, основные элементы и их назначение. Теги title, link, meta.
- •6. Теги, атрибуты, контейнеры, мнемонические подстановки. Блочные и строчные теги. Теги создания абзацев, заголовков, списков, внутриабзацного выделения, гиперссылок, иллюстраций.
- •10. Типы сайтов - информационные и дизайнерские. Сайт, структура сайта, навигация по сайту. Шапка, блоки меню, рабочая область информационного сайта. Жесткий и резиновый дизайн при верстке сайтов.
- •11. Разделение статических и динамических зон при верстке сайтов. Методы создания многостраничных сайтов - JavaScript, фреймы, ssi.
- •12. Начальные представления о методах организации сайта при помощи серверных скриптов и базы данных.
- •ИсвКиПд
- •1. Визуальная коммуникация: характеристики, принципы, свойства.
- •2. Классические психологические исследования в области восприятия и коммуникаций.
- •3. Создание образа. Архетипы и индивидуальность.
- •4. Стиль как основа дизайна. Компоненты стилевого решения.
- •5. Виды дизайна, динамика и перспектива его развития.
- •6. Элементы и свойства дизайнерского решения.
- •7. Элементы дизайна книги.
- •8. Шрифтовые решения в дизайне. Правила, сочетания, возможности.
- •9. Работа с фотоизображениями. Технический отбор и свойства цифровой фотографии.
- •10. Полиграфическое производство. Основные этапы, компоненты и способы печати.
- •11. Бумага. Основные характеристики и дизайнерские свойства.
- •12. Оформление и обеспечение корректной подготовки оригинал-макета.
- •1. Понятие компьютерной презентации.
- •2. Классификация презентаций по способу представления, по презентационному оборудованию, по интерактивности.
- •3. Классификация презентаций по содержанию и аудитории.
- •4. Форматы графических файлов.
- •5. Запись звука на компьютере. Формат midi.
- •6. Использование гипертекстовых форматов в презентациях.
- •7. Стандартные программные средства для оформления презентаций.
- •8. Аппаратная поддержка презентаций.
- •9. Показ и управление слайдами.
- •10. Оформление и разметка слайдов.
- •1. Графика. Физические основы кодирования графики. Разрешение, глубина цвета, цветовая модель (rgb, hsv, Lab). Несжатые графические форматы - raw, bmp, pcx, pct (для Mac), tiff.
- •2. Двух (и более) байтовые кодировки. Юникод. Универсальный набор символов (ucs). Семейство кодировок: utf-8, utf-16, utf-32. Порядок байтов. Юникод в операционных системах Windows и unix.
- •3. Алгоритмы сжатия без потерь - кодирование длин серий (rle), алгоритм Лемпеля-Зива-Велча (lzw), форматы gif и png.
- •4. Звук. Физические основы кодирования звука. Аналого-цифровой преобразователь и импульсно-кодовая модуляция. Параметры звуковых файлов - частота сэмплирования, глубина модуляции, битрейт.
- •5. Несжатые звуковые файлы в формате raw (pcm) и в форматах wav и Apple aiff. Контейнер riff и структура файла wav.
- •6. Сжатие звука с потерями (mp3, aac, wma, ogg) и без потерь (mlp, flac, ape, WavPack).
- •7. Видео. Параметры видеофайлов - частота кадров, разрешение, цветовая модель и глубина цвета, соотношение сторон экрана. Потоки и их синхронизация. Компенсация движения.
- •12. Блоковая модель документа. Содержимое блока, рамки, поля и отступы. Блочные и строчные теги как элементы блоковой модели. Свойства display, overflow.
- •13. Понятие нормального потока. Позиционирование - статическое, абсолютное, относительное, фиксированное. Плавающая модель. Верстка многоколонного макета. Свойства position, float, clear.
- •14. Объектная модель документа, динамический html. Объекты, их свойства и методы. Обработчики событий. Формулировка свойств css в объектной модели. Метод getElementById.
- •15. Локальное программирование на языке JavaScript. Способы включения в документ - внешние, внутренние и локальные скрипты. Синтаксис JavaScript. Переменные, операторы и функции.
- •1. Понятие об электронных изданиях. Классификация. Технологии гипертекстовых изданий.
- •2. Аппаратные технологии электронных книг. Понятие электронной книги - ридера. Преимущества и недостатки. Технология жк-мониторов.
- •3. Аппаратные технологии электронных книг. Понятие электронной книги - ридера. Преимущества и недостатки. Технология «электронные чернила».
- •4. Формат pdf. Описание (про PostScript), преимущества, недостатки. Предназначение и особенности формата. По для работы с форматом.
- •5. Формат pdf. Описание, преимущества, недостатки. Обобщённая структура формата. Структура файла. Структура документа. Три типа структурированных документов.
- •3 Типа структурирования pdf-файлов:
- •6. Формат DjVu. Описание, преимущества, недостатки. Шесть основных технологий, которые лежат в основе формата. Разрушающие и не разрушающие методы сжатия. Технология разделения на слои.
- •7. Формат DjVu. Описание, преимущества, недостатки. Технология разделения на слои. По для работы с форматом.
- •8. Формат rtf. Структура формата. Управляющие слова и управляющие символы.
- •9. Система вёрстки TeX. Применение, достоинства, недостатки. Основные понятия. Команды и их задание в тексте.
- •10. Создание корректно сформированных xml-документов.
- •11. Определение типа документа dtd. Валидные xml-документы. Синтаксис dtd, объявления элементов и списков атрибутов.
- •12. Формат FictionBook. Структура и элементы формата FictionBook.
- •13. Раздел description в формате FictionBook, элементы библиографического описания.
- •14. Раздел body в формате FictionBook, элементы структурирования и форматирования. Включение иллюстраций при помощи раздела binary. Оформление примечаний.
- •15. Формат ePub. Структура и элементы формата.
1. Цифровое представление графической информации. Источники оцифрованных изображений. Оцифровка аналоговых изображений. Дискретизация и квантование. Примеры источников оцифрованных изображений.
В технике идет переход на цифровые методы обработки информации. Это связано с тем, что цифровую информацию легче хранить и передавать по современным линиям связи практически без потерь.
Встречаются 3 типа цифровых графических изображений: растровый, векторный и фрактальный. Они могут быть как сразу созданы на компьютере, так и оцифрованные.
Оцифровка – это описание аналогового объекта, изображения или аудио/видеосигнала в виде набора дискретных цифровых замеров этого сигнала или объекта при помощи той или иной аппаратуры, т.е. перевод его в цифровой вид, пригодный для записи на электронные носители.
Перевод изображения в электронную форму так же называют оцифровкой. В наше время для этой операции используют, главным образом, цифровые фотоаппараты (ЦФК) и сканеры. Цифровые фотоаппараты, если абстрагироваться от второстепенных деталей, основанные на одном принципе действия (рассмотрен подробнее далее). Сканеры имеют множество технических реализаций, различающихся между собой конструкторским исполнением, областью применения, типом обрабатываемых оригиналов и пр. Ручные сканеры, планшетные сканеры, барабанные сканеры, слайд-сканеры, высокопроизводительные полуавтоматические приборы считывания - далеко не полный перечень типов таких устройств оцифровки.
1. ЦФК имеет систему линз, диафрагму и затвор, как и аналоговый фотоаппарат. Но вместо плёнки у цифровой камеры матрица (сенсор). **Вообще, световые лучи ведут себя одинаково и в цифровом, и в аналоговом фотоаппарате, но только до момента попадания на «приёмник» - поверхность матрицы в одном случае или плёнки в другом. И если в этот момент аналоговая камера «заморозила» изображение на плёнке, то цифровая далее обрабатывает его и сохраняет в цифровом формате**. Так как основным элементом любой цифровой фотокамеры является матрица, именно от её характеристик зависит, качество изображения.
**В современных цифровых фотоаппаратах наиболее распространены ПЗС-матрицы**.
Сама матрица состоит из множества светочувствительных элементов - пикселей. Для того чтобы получить цветные фото, перед элементами матрицы устанавливаются светофильтры. После того, как определённый цвет попал на матрицу, она подаёт сигнал процессору ЦФК. Нетрудно понять, что на самой матрице изображение не формируется, она лишь звено для передачи информации, хоть и является важнейшей частью фотокамеры. И далее уже процессор обрабатывает полученную информацию, затем пишет её в память. **При обработке некоторые данные неизбежно теряются, поэтому впоследствии изображение восстанавливается с помощью программного обеспечения**.
Как видим, фотография, полученная цифровым фотоаппаратом – это сочетание работы матрицы, процессора и флеш-памяти.
**Давайте подробнее разберёмся, что же представляет собой сердце цифровой камеры, ПЗС (прибор с зарядовой сетью, или по-английски CCD – Charge Couped Device).
Такая матрица - полупроводниковая пластинка, состоит из большого количества светочувствительных диодов. Хотя сама матрица размером с ноготь, она содержит несколько миллионов пикселей, расположенных в виде строк и столбцов. Элементы ПЗС-матрицы реагируют на свет абсолютно одинаково, следовательно, при фотографировании можно получить лишь чёрно-белую картинку. Для того чтобы снимок был цветным, диодам нужно придать разную цветочувствительность. Это достигается с помощью различных цветовых фильтров – в основном красного, жёлтого и зелёного. Кроме этого, освещенность может быть разной интенсивности, она делится на 256 уровней. Таким образом, число всевозможных комбинаций цветов составляет почти 17 миллионов вариантов. Благодаря этому и получается наиболее реалистичное изображение, которое мы в итоге видим на дисплее.**
2. Сканер — устройство, которое создаёт цифровое изображение сканируемого объекта. **Полученное изображение может быть сохранено как графический файл, или, если оригинал содержал текст, распознано посредством программы распознавания текста и сохранено как текстовый файл**.
Рассмотрим принцип действия планшетных сканеров, как наиболее распространённых моделей. Сканируемый объект кладётся на стекло планшета сканируемой поверхностью вниз. Под стеклом располагается подвижная лампа, движение которой регулируется шаговым двигателем.
Свет, отражённый от объекта, через систему зеркал попадает на чувствительную матрицу, далее на АЦП и передаётся в компьютер. За каждый шаг двигателя сканируется полоска объекта, потом все полоски объединяются программным обеспечением в общее изображение.
В зависимости от способа сканирования объекта и самих объектов сканирования существуют следующие виды сканеров:
Планшетные (обеспечивают максимальное удобство для пользователя, высокое качество и приемлемую скорость сканирования) – представляет собой планшет, внутри которого под прозрачным стеклом расположен механизм сканирования.
Ручные — в них отсутствует двигатель, следовательно, объект приходится сканировать вручну (+:дешевизна и мобильность), (–: низкое разрешение, малая скорость работы, узкая полоса сканирования, возможны перекосы изображения, поскольку пользователю будет трудно перемещать сканер с постоянной скоростью).
Листопротяжные — лист бумаги вставляется в щель и протягивается по направляющим роликам внутри сканера мимо лампы. Имеет меньшие размеры, по сравнению с планшетным, однако может сканировать только отдельные листы. Многие модели имеют устройство автоматической подачи, что позволяет быстро сканировать большое количество документов, причем в ряде моделей – с двух сторон за один прогон.
Планетарные — применяются для сканирования книг или легко повреждающихся документов. При сканировании нет контакта со сканируемым объектом (как в планшетных сканерах).
Барабанные — применяются в полиграфии, имеют большое разрешение (около 10 тысяч точек на дюйм). Оригинал располагается на внутренней или внешней стенке прозрачного цилиндра (барабана).
Слайд-сканеры — как ясно из названия, служат для сканирования плёночных слайдов, выпускаются как самостоятельные устройства, так и в виде дополнительных модулей к обычным сканерам.
3D-сканер – устройство для получения 3D-изображений (моделей) с помощью системы камер или специальных точечных сенсоров.
**Характеристики сканеров
Формата сканируемой поверхности: А4 (стандартный печатный лист), A3, слайд-сканеры под формат пленки 13х18 и 18х24…
Оптическое разрешение. Разрешение измеряется в точках на дюйм (dots per inch — dpi). Указывается два значения, например 600x1200 dpi, горизонтальное — определяется матрицей CCD, вертикальное — определяется количеством шагов двигателя на дюйм.
Интерполированное разрешение. Искусственное разрешение сканера достигается при помощи программного обеспечения. Его практически не применяют, потому что лучшие результаты можно получить, увеличив разрешение с помощью графических программ после сканирования. Используется производителями в рекламных целях.
Скорость работы. Измеряется в страницах в минуту, при этом имеются в виду страницы определенного формата и определенное разрешение сканнера, из числа возможных.
Глубина цвета. Определяется качеством матрицы CCD и разрядностью АЦП. Измеряется количеством оттенков, которые устройство способно распознать. 24 бита соответствует 16777216 оттенков. Современные сканеры выпускают с глубиной цвета 24, 30, 36 бит. Несмотря на то, что графические адаптеры пока не могут работать с глубиной цвета больше 24 бит, такая избыточность позволяет сохранить больше оттенков при преобразованиях картинки в графических редакторах.
**Аналоговый сигнал – это в простейшем случае число, зависящее от времени (непрерывен). При записи на носитель информации или воспроизведении с него сигнал неизбежно искажается различного рода шумами. **
При оцифровке сигнала производятся две операции - дискретизация и квантование.
Дискретизация
- преобразование непрерывной функции
в дискретную (замена
сигнала x(t)
с
непрерывным временем
t на
дискретизованный сигнал –
последовательность
чисел
x(ti)
для
дискретного набора моментов времени
t1,
t2,
..., ti,
...(чаще всего интервалы между моментами
времени
берутся
одинаковыми).
**При
дискретизаци, часть информации о сигнале
теряется. Но если сигнал x(t)
за время
не сильно изменяется, числа x(ti)
и x(ti-1)
близки друг к другу, то поведение x(t)
между временами ti
и ti-1
нетрудно восстановить (сигнал практически
линейно изменяется во времени от x(ti-1)
до x(ti)).
При дискретизации мы теряем частотные
составляющие сигнала с частотами порядка
и выше.**
Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал.** Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Возможность точного воспроизведения такого представления зависит от интервала времени между отсчётами Δt. Согласно теореме Котельникова: Δt<1/(2*Fmax), где Fmax - наибольшая частота спектра сигнала.**
Сигнал
дискретизирован по времени (без
квантования)
Квантование сигнала – это нечто похожее, только данная процедура производится не со временем, а со значением сигнала x. Выбирается некий набор возможных значение сигнала x1, x2, ..., xn, ... и каждому x(ti) сопоставляется ближайшее число из этого набора. Т.е. происходит разбиение диапазона значений непрерывной или дискретной величины на конечное число интервалов. Существует также векторное квантование - разбиение пространства возможных значений векторной величины на конечное число областей. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования. Квантование приводит сигнал к заданным значениям, то есть, разбивает по уровню сигнала.
Однородное
(линейное) квантование - разбиение
диапазона значений на отрезки равной
длины. Его можно представлять как деление
исходного значения на постоянную
величину (шаг квантования) и взятие
целой части от частного:
(квантованный
сигнал)
Иногда,
чтобы внести в сигнал минимальные
искажения, квантование делают так, что
интервалы
делают
неравными (нелинейное квантование).
Например, часто делают
маленьким при малом значении сигнала,
чтобы относительная погрешность (шум
квантования/сигнал) не становилась
очень большой при малых
.
При оцифровке сигнала уровень квантования называют также глубиной дискретизации или битностью. Глубина дискретизации измеряется в битах и обозначает количество бит, выражающих амплитуду сигнала. Чем больше глубина дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае однородного квантования глубину дискретизации называют также динамическим диапазоном и измеряют в децибелах (1 бит ≈ 6 дБ).
Квантование по уровню - представление величины отсчётов цифровыми сигналами. Для квантования в двоичном коде диапазон напряжения сигнала от Umin до Umax делится на 2n интервалов. Величина получившегося интервала (шага квантования): Δ=(Umax-Umin)/2n
**Перевод
аналогового сигнала в цифровой выполняется
– аналогово-цифровыми преобразователями
(АЦП). Основными параметрами АЦП являются
частота
дискретизации
и
разрядность
АЦП
(количество двоичных разрядов, в которых
хранится значение сигнала x,
число возможных значений квантованного
сигнала равно 2N,
где N-
число разрядов). Чем выше разрядность
АЦП, с тем большей точностью можно
хранить сигнал (
мало), но тем медленнее он работает
(больше
).
**Устройство, производящее обратную операцию (чтобы передать оцифрованный сигнал на какое-нибудь воспроизводящее устройство (динамик, телевизор, приводной мотор и т.д.)) называется цифро-аналоговым преобразователем (ЦАП).**
**Цифровую информацию можно передать по линии связи практически без потерь. При передаче сигнал сначала превращается в аналоговый, пересылается, после чего опять оцифровывается.**
(в
общем случае вид цифрового сигнала)