
- •1.Класифікація проблем за ступенем їх структуризації.
- •2.Описання систем з кінцевим числом станів.
- •3.Випадковий процес – математична модель сигналів
- •4.Кількість інформації як міра знятої невизначеності.
- •5.Модель "чорного ящика".
- •6.Пошук альтернативи із заданими властивостями.
- •7.Модель структури системи.
- •8.Частотно-часове представлення сигналів.
- •9.Поняття невизначеності.
- •10.Зв'язок між формальною та змістовною моделями
- •11.Критерій для оптимізації рішень в умовах ризику та невизначеності.
- •12.Структуризація кінцевої мети у вигляді дерева цілей
- •13.Принципи рішення слабоструктурованих проблем.
- •14.Принцип узгодженого оптимуму Парето
- •16.Стійкість систем
- •17.Пошук нових технічних рішень на базі морфологічного аналізу.
- •18.Фундаментальна властивість ентропії випадкового процесу.
- •19.Емерджентність як результат агрегування.
- •20.Основні етапи та методи системного аналізу.
- •21. Стохастичні системи.
- •22. Процедура структуризації проблеми у вигляді дерева рішень.
- •23. Методика структурного аналізу з використанням функції корисності.
- •24 Керовані та некеровані динамічні системи.
- •25. Поняття та основні напрямки математичної статистики.
- •26. Динамічні моделі систем.
- •27. Складність систем
- •28. Модель складу системи.
- •29. Кількість інформації в індивідуальних подіях.
- •30. Цикли проектування та рівні оптимізації складних технічних систем.
- •31. Зведення багатокритеріальних задач до однокритеріальної.
- •32. Глобальні властивості систем
- •33. Методика багатокритеріального вибору раціональних структур.
- •34.Кількість інформації як міра відповідності випадкових процесів
- •35.Ранжування критеріїв по їх важливості методом Перстоуна.
- •36.Метод комплексної оцінки структур
- •37.Принципи рішення добре структурованих проблем.
- •38.Статистичний розв’язок як вибір.
- •39. Парадокси голосування.
- •40.Сутність задач системного проектування та природа багатоканальності
- •41.Дискретне представлення сигналів.
- •42.Переоцінка альтернатив на основі байєсівського підходу.
- •43.Описання вибору на мові бінарних відношень.
- •44.Стаціонарні системи.
- •45.Ранжування проектів методом парних порівнянь.
- •46.Метод функціонально-вартісного аналізу
- •47.Ентропійна оцінка узгодженості експертів.
- •48.Вибір як реалізація цілі.
- •49.Принципи формалізації евристичної інформації.
- •50.Диференціальна ентропія.
- •51.Знаходження паретівської множини.
- •62. Катастрофи та властивість адаптації
- •63. Вибір раціональної стратегії з використанням множини критеріїв
- •64. Загальна математична модель динаміки
32. Глобальні властивості систем
До глобальних властивостей систем відносять: 1.Цілісність та подільність. Система є, передусім, цілісною сукупністю елементів. Це означає, що, з одного боку, система — це цілісне утворення, а з іншого — в її складі чітко можуть бути виділені окремі цілісні об’єкти (елементи). Первинність цілого — головний постулат теорії систем. 2.Неадитивність системи (емерджентність). Властивості системи хоча і залежать від властивостей елементів, але не визначаються ними повністю. система не зводиться до простої сукупності елементів; розділяючи систему на частини, досліджуючи кожну з них окремо, неможливо пізнати всі властивості системи в цілому. 3.Емерджентність є результатом виникнення між елементами системи так званих синергічних зв’язків, які забезпечують загальний ефект функціонування системи, більший, ніж сума ефектів елементів системи, діючих незалежно. 4.Ієрархічність системи — це складність структури системи, яка характеризується такими показниками: кількістю рівнів ієрархії управління системою, різноманіттям компонентів та зв’язків, складністю поведінки та неадитивністю властивостей, складністю опису та управління системою, кількістю параметрів та необхідним обсягом інформації для управління системою. 5.Взаємозалежність між системою та зовнішнім середовищем. Система формує та проявляє свої властивості при взаємодії із зовнішнім середовищем. 6.Рівень самостійності та відкритості системи визначається такими показниками: кількістю зв’язків системи із зовнішнім середовищем у середньому на один її елемент чи інший параметр; інтенсивністю обміну інформацією чи ресурсами між системою та зовнішнім середовищем; ступенем впливу інших систем. 7.Цілеспрямованість системи означає наявність у неї цілі.8. Надійність системи (наприклад, організації) характеризується, зокрема: безперебійністю функціонування системи при виході із ладу одного із компонентів; фінансовою стійкістю та платоспроможністю організації; перспективністю запровадженої економічної, технічної, соціальної політики. 9.Розмірність системи — кількість компонентів системи та зв’язків між ними. Ці показники характеризують також складність системи.
33. Методика багатокритеріального вибору раціональних структур.
Побудова моделей багатокритеріальних вибору раціональних структур є складною процедурою, що складається з формалізованих і неформалізованих етапів. Етапи цієї процедури обумовлюються елементами багатокритеріальної моделі, а послідовність етапів і види можливих ітерацій - взаємозв'язками елементів. Етапи: 1. Аналіз початкових характеристик елементів двох множин. Початкові дані перетворюються до вигляду, зручного для подальшого аналізу і перевіряється можливість отримання ідеального рішення. 2. Формування області допустимих рішень. 3. Визначення критеріальних відповідностей. Виявляються переваги якості призначень та формується порядок, що відображає якість призначень, які входять у визначену область допустимих рішень. 4. Пошук оптимального рішення. Здійснюється пошук ідеальних критеріальних відповідностей. 5. Пошук остаточного рішення багатокритеріальної задачі. Залежно від типу задач, початкових даних і результатів попереднього етапу вибираються вирішальні правила і алгоритми, реалізація яких приводить до остаточного рішення.Висновками даної методики є : а) вибір найкращих з точки зору корисності параметрів системи. б) вибір раціональних значень параметрів побудови.