Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
obschee_teoria.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
558.59 Кб
Скачать

30. Цикли проектування та рівні оптимізації складних технічних систем.

В настоящее время в стадии становления находится новое научное направление, а именно т-я качества сложных систем, в частности АСУ различных уровней и назначения. В проблематику данного направления входят вопросы обеспечения качества систем на всех этапах их создания и развития. Современное представление о процессе проектирования сложных технических систем включает 3 характерных цикла:

  1. внешнее проектирование

  2. формирование облика системы

  3. внутреннее проектирование

Первый цикл представляет конкретизацию целей и функций системы, а также представление требований к ее характерам качества.

Второй цикл служит для корректной увязки требований внешнего проектирования с конструкторскими и технологическими возможностями внутреннего проектирования и состоит в выборе рациональной структуры из некоторого множества конкурирующих структур.

Третий цикл предполагает разработку выбранной структуры и ее реализацию в виде комплекса технических ф-в, принадлежащих системе требуемое качество.

Циклам проектирования соответствуют следующие уровни оптимизации систем:

  1. Глобальная оптимизация, т.е. поиск прогрессивной технической идеи для создаваемой системы.

  2. Структурная оптимизация, т.е. выбор рациональной структуры системы в рамках используемой технической идеи.

  3. Параметрическая оптимизация, т.е. подбор наилучшей совместимости параметров для выбранной структуры систем.

Оптимизация системы последовательно на всех 3-х уровнях приводит к синтезу структуры, удовлетворяющей заданным требованиям по качеству.

Наибольший эффект в обеспечении качества системы дает глобальная оптимизация (Глушков, Мясников, Половинкин) 30-50%, наименьший эффект — параметрическая оптимизация 10-15%, структурная оптимизация занимает промежуточное положение 20-30%. Причем, степень оптимизации зависит весьма существенно от множества конкурирующих структур и их проработки по векторному критерию качества.

31. Зведення багатокритеріальних задач до однокритеріальної.

Розглянемо загальну постановку задачі прийняття рішення. Нехай ОПР має набір стратегій (варіантів рішення), які подані вектором , на елементи якого накладено ряд обмежень, що зумовлені фізичним та економічним змістом задачі: де a, b — вектори параметрів. Загальна постановка однокритеріальної статичної детермінованої задачі прийняття рішення (ЗПР) збігається з загальною постановкою задачі математичного програмування (МП). Тому для розв’язання такого типу ЗПР може бути використаний арсенал методів, розроблений для задач МП.

Але на практиці, як правило, необхідно приймати рішення, враховуючи кілька критеріїв, що приводить до задач векторної (багатокритеріальної) оптимізації. Позначимо векторний критерій через , де — вектор-функція від стратегій x. Тоді оптимальне рішення має задовольняти співвідношення: ,

де opt — оператор оптимальності, X — множина допустимих альтернатив, — оптимальна стратегія та відповідне оптимальне значення вектора ефективності.

Один із найвідоміших принципів багатокритеріальної оптимізації — це принцип Парето. Парето-оптимальність не потребує виділення однієї найкращої альтернативи (тобто кращої за всіма критеріями). Множина оптимальних, за Парето, стратегій X* містить стратегії, які більш прийнятні щодо довільної альтернативи з множини X*, де . При цьому довільні дві стратегії з множини Парето непорівнянні. Непорівнянними називають стратегії , якщо стратегія є кращою за однією групою критеріїв, а — за іншою.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]