
- •«Элементы подгруппы углерода»
- •Оглавление
- •Введение
- •Модуль 1. Общая характеристика подгруппы, получение и свойства простых веществ.
- •1.1 Содержание модуля
- •1.1.1 Простые вещества.
- •1.1.2 Химические свойства простых веществ. Химические свойства углерода.
- •Химические свойства кремния.
- •Химические свойства Ge, Sn, Pb.
- •1.2 Проектное задание:
- •Тест рубежного контроля:
- •Бланк ответов
- •Модуль 2. Водородные соединения, гидриды и их производные
- •2.1 Содержание модуля.
- •2.1.1 Водородные соединения элементов подгруппы углерода
- •2.1.2 Карбиды
- •2.1.3 Силициды
- •2.1.4 Германиды, станниды, плюмбиды
- •2.2 Проектное задание:
- •2.3 Тест рубежного контроля:
- •Бланк ответов
- •3.1 Содержание модуля.
- •3.2 Проектное задание:
- •Бланк ответов
- •4.1 Содержание модуля.
- •4.2 Проектное задание.
- •4.3 Тест рубежного контроля
- •5.1 Содержание модуля
- •5.2 Проектное задание
- •5.3 Тест рубежного контроля
- •Бланк ответов
- •6.1 Содержание модуля
- •6.1.1 Оксид углерода (II) и оксид кремния (II)
- •6.1.2 Оксиды германия, олова и свинца (II).
- •Проектное задание
- •Тест рубежного контроля
- •Бланк ответов
- •7.1 Содержание модуля
- •7.1.1 Галогениды элементов подгруппы углерода Галогениды углерода
- •Галогениды кремния.
- •Галогениды германия
- •Галогениды олова
- •Галогениды свинца
- •7.1.2. Соединения с серой.
- •7.1.3 Азотсодержащие соединения
- •7.2 Проектное задание
- •7.3 Тест рубежного контроля
- •Бланк ответов
- •Список литературы
5.1 Содержание модуля
Диоксиды германия и олова твердые тугоплавкие вещества белого цвета. Черно-коричневый диоксид свинца при нагревании разлагается.
ЭО2 со структурой рутила – химически малоактивные вещества, в воде не растворяются, проявляют амфотерные свойства, но практически не реагируют с разбавленными растворами кислот и щелочей. Существует еще высокотемпературная модификация GeO2 со структурой типа кварца (к.ч. германия равно 4, поэтому он координационно ненасыщен), которая более активна в химических реакциях, именно для нее и приводятся следующие реакции:
GeO2 + 4HF = GeF4 ↑+ 2H2O; GeO2 + 6HCl = H2 [GeCl6] + 2H2O;
GeO2 + 2NaOH = Na2GeO3 + H2O;
GeO2 + 2 NaOH + 2 H2O = Na2[Ge(OH)6]
Диоксид германия при высокой температуре проявляет окислительные свойства по отношению к водороду и коксу:
GeO2 + 2H2 = Ge + 2 H2O; GeO2 + C(кокс) = Ge + CO2.
Диоксиды олова и свинца также имеют несколько модификаций. При обычных условиях более устойчивы тетрагональные модификации со структурой рутила. Ромбическая форма ЭО2 менее устойчива.
Диоксиды германия и олова плавятся без разложения, диоксид свинца разлагается в зависимости от температуры по разному:
3β-PbO2 = O2 + Pb3O4 (> 280ºC), 2 α- PbO2 = O2 + 2PbO (≈ 600º).
Диоксид олова при продолжительном нагревании с концентрированной серной кислотой образует Sn(SO4)2:
SnO2 + 2H2SO4 (конц.)= Sn(SO4)2 + 2H2O;
SnO2 + 2NaOH (сплавление) = Na2SnO3 + H2O.
В кислой среде высшая степень окисления у свинца резко дестабилизируется, поэтому взаимодействие с кислотами сопровождается изменением ст.ок.:
PbO2 + 4HCl = PbCl2↓ + Cl2↑+ 2H2O;
PbO2 + 6HCl (конц.) = H2[PbCl4] + Cl2↑+ 2H2O;
2PbO2 + 2H2SO4 (конц.)= 2PbSO4↓ + O2↑ +2H2O;
5PbO2 + 6HNO3(разб.) + 2Mn(NO3)2 = 5Pb(NO3)2 + 2HMnO4 + 2H2O.
Мелкодисперсный диоксид свинца очень медленно растворяется в растворах щелочей при кипячении:
PbO2 +2 NaOH + 2 H2O = Na2[Pb(OH)6].
Смешанные оксиды Pb2O3 и Pb3O4 содержат свинец в разных степенях окисления +2 и +4 (являются мета- Pb+2[Pb+4O3] и ортоплюмбатами Pb+22 [Pb+4O4] свинца), что легко выявляется при взаимодействии с азотной кислотой:
Pb3O4 + HNO3(разб.) = PbO2 + 2Pb(NO3)2 + 2H2O.
Окислительные свойства Pb2O3 и Pb3O4 такие же, как у диоксида свинца:
Pb3O4 + 8HCl = 3PbCl2↓ + Cl2↑+ 4H2O.
Германиевые, оловянные и свинцовые кислоты
Гидратированный оксид германия (IV) имеет состав GeO2∙nH2O, где n >2. Хотя строение GeO2 и SiO2 сходно, оксид германия (IV), в отличие от SiO2, взаимодействует с водой. Полученный из водных растворов (например, гидролизом солей) диоксид германия всегда содержит какое-то количество связанной и адсорбированной воды.
Водные растворы GeO2 обладают кислой реакцией. Гидратированный GeO2 может образовывать как истинные, так и коллоидные растворы.
Константы кислотной диссоциации GeO2∙nH2O для первых двух ступеней близки к константам H4SiO4: KaI=7,9 ∙ 10−10, KaII =2,0 ∙ 10−13.
Гидрат оксида GeO2 можно отнести к амфотерным соединениям, существует два ряда производных – германаты типа К2GeO3 и К4GeO4 (твердофазный синтез) или К2[Ge(OH)6] (растворы), где Ge (+4) проявляет анионную функцию. Аналогичные свойства проявляют другие амфотерные оксиды и гидраты оксидов, например производные бериллия и алюминия.
Состав солей германия (+4) в растворах зависит от концентрации и кислотности. Так при pH = 7–10 образуются в основном метагерманат-ионы GeO32−, которые правильнее рассматривать как оксогидроксокомплексы состава [GeO2(OH)2]2−. При pH > 11 обнаружены гидроксокомплексы[Ge(OH)6]2−, т.е. происходит полная замена оксогрупп в окружении германия на гидроксогруппы. При pH = 1–7 наряду с германийсодержащими анионами присутствуют германийсодержащие катионы. В сильно кислых растворах хлоридов обнаружены ионы [Ge(OH)nCl6-n]2−.
Соли германия (+4) и кислородсодержащих кислот обычно неустойчивы и не имеют практического применения. Тетраацетат Ge(CH3COO)4 выделяют в виде бесцветных кристаллов (Тпл=156ºС), когда концентрируют при пониженном давлении и охлаждении раствор, полученный при взаимодействии GeCl4 с ацетатом таллия (I) в уксусном ангидриде. Неустойчивый сульфат Ge(SO4)2 синтезирован по реакции GeCl4 с SO3 в запаянной ампуле при 160ºС.
Соли германиевой кислоты – мета- и ортогерманаты (Na2GeO3, Mg2GeO4, Ca2GeO4, Ca3GeO5 и др.) – можно получить в кристаллическом состоянии методами твердофазного синтеза. Структура их аналогична структурам соответствующих мета- и ортосиликатов. Например, Na2GeO3, растворим в воде, в растворе сильно гидролизован. Германаты других элементов-металлов в воде практически нерастворимы, но, будучи свежеосажденными, растворяются в минеральных кислотах. Германаты применяют в качестве активаторов люминофоров.
Гидроксиды олова и соли
Гидрат оксида олова (+4) – так называемая оловянная кислота, существует в виде двух форм, различающихся по химической активности.
α-Оловянная кислота SnO2∙nH2O (n = 1−2) получается гидролизом SnCl4 при обычной температуре в виде объемистого белого осадка, легко растворимого в кислотах и растворах щелочей. При стоянии происходит старение α-оловянной кислоты и переход ее в β-оловянную кислоту SnO2∙nH2O (n<1). Старение ускоряется при нагреваеии и добавлении OH−-ионов. Процесс старения можно изобразить следующей схемой:
┌
OH
┐6+
┌ O
┐4+
│
(H2O)4→Sn
Sn
←(H2O)4│+ 2H2O↔│(H2O)4→Sn
Sn
←(H2O)4│+2H3O+
└ OH ┘ └ O ┘
β -Оловянная кислота не растворяется в кислотах и щелочах, но пептизируется ими. Химическая инертность β-оловянной кислоты объясняется тем, что оксоловые мостиковые группы менее реакционноспособны, чем оловые, и, кроме того, наряду с оксоляцией происходит удлинение цепочек и соединение их друг с другом, что приводит к укрупнению частиц. Дальнейшее развитие процесса старения (оксоляции) приводит к образованию гидратированного оксида олова (IV). Рентгенографическое исследование оловянных кислот показало, что обе формы (α- и β-) имеют структуру рутила, вода в них находится в адсорбированном состоянии.
β-Оловянную кислоту получают и непосредственно окислением металлического олова концентрированной азотной кислотой. В растворимое состояние олово (IV) переводят сплавлением β-оловянной кислоты с твердыми щелочами.
Из щелочного раствора α-оловянной кислоты можно выделить соль – гексагидроксостаннат (IV) натрия Na2 [Sn(OH)6]. Гексагидроксостаннат-ион имеет форму октаэдра с атомом Sn в центре и OH−-ионами в вершинах. Станнаты щелочных металлов хорошо растворимы в воде, станнаты щелочно-земельных и тяжелых металлов плохо растворимы.
Соли, содержащие олово (IV) в форме катиона, растворяются в неполярных растворителях, что указывает на ковалентную природу этих соединений и лишь формальную принадлежность солям. Подобно другим ковалентным соединениям такого состава, они относятся к ангидридам, которые при взаимодействии с водой полностью гидролизуются, образуя две кислоты. Негидролизованные «соли» можно получить только в неводных растворах или сильнокислых средах. Например, Sn(SO4)2 образуется в результате взаимодействия металлического олова с концентрированной серной кислотой при нагревании. Другой способ состоит в растворении свежеосажденной α-оловянной кислоты в горячей разбавленной H2SO4. Из раствора можно выделить бесцветные, очень гигроскопичные кристаллы Sn(SO4)2∙2H2O. Другие соли олова (IV), как правило, безводны и в присутствии воды полностью гидролизуются.
Ацетат олова (IV) Sn(CH3COO)4 – бесцветное кристаллическое вещество, растворимое в бензоле и ацетоне; водой гидролизуется с образованием оловянной и уксусной кислот; для синтеза используется реакция
SnI4 + 4TlCH3COO = Sn(CH3COO)4 + 4TlI.
Гидроксид свинца и его соли
Гидратированный оксид свинца (IV) PbO2∙nH2O образуется при гидролизе солей свинца (IV) – плюмбатов и при окислении солей свинца (II) в водных растворах. Из солей Pb (+4) наиболее доступны ацетат и сульфат.
Ацетат свинца (IV) Pb(CH3COO)4 образуется в виде бесцветных игольчатых кристаллов (Tпл=175ºС) при действии на Pb3O4 теплой безводной уксусной кислоты:
Pb3O4 + 8CH3COOH = Pb(CH3COO)4 + 2Pb(CH3COO)2 + 4H2O.
Поскольку ацетат Pb (+4) разлагается водой на PbO2 и уксусную кислоту, синтез проводят в присутствии уксусного ангидрида, который связывает выделяющуюся воду. При охлаждении кристаллизуется тетраацетат Pb(CH3COO)4. Для получения дополнительного количества соли через маточный раствор при нагревании пропускают ток сухого хлора:
2Pb(CH3COO)2 + Cl2 = Pb(CH3COO)4 + PbCl2↓.
Осадок PbCl2 отделяют от горячего раствора, а при охлаждении фильтрата из него выделяется тетраацетат.
Сульфат свинца (IV) Pb(SO4)2 образуется на свинцовых электродах при электролизе 80%-й серной кислоты. Это желтоватый кристаллический порошок, разлагающийся водой с образованием PbO2. Известны также двойные сульфаты типа K2[Pb(SO4)3], которые, как и Pb(SO4)2, являются очень сильными окислителями.