
- •1.Предмет, задачи и методы эконометрики.
- •2.1 Общие положения.
- •2.2 Метод наименьших квадратов.
- •2.3 Свойства оценок полученных мнк.
- •3.1 Выбор функционального показателя.
- •4.1 Общие положения.
- •3.2 Отбор факторов-аргументов.
- •3.3. Выбор формы связи
- •3.4 Отбор исходных данных.
- •4.2 Проверка случ-ти колебаний уровня остаточной последоват-ти.
- •4.4 Проверка рав-ва матем.Ожидания случайной компоненты нулю.
- •4.3 Проверка соответствия распределения случ.Компоненты нормальному з-ну распредел-я.
- •4.5 Проверка независ-ти значений уровней случайной компоненты.
- •4.6 Определение точности модели.
- •5.1 Линейные ур-я регрессии. Закон сложения дисперсий.
- •5.2 Коэф.Парной и частной коррел., коэф.Эластичности.
- •5.3 Коэф.Множественной коррел.И детерминации.
- •6.1 Критерий Фишера.
- •6.2 Критерий Стьюдента.
- •7.1.Гетероскедастичность остатков в ур.Регрессии и ее последствия.
- •7.2.1. Тест ранговой корреляции Спирмена.
- •7.2.2.Тест Голфенда-Квандта.
- •7.2.3 Тест Глейзера.
- •7.3 Методы устранения гетероскедастичности.
- •8.1 Автокорреляция (остатков) и связанные с ней факторы.
- •8.2. Обнаруж-е автокоррел.1-го порядка. Критерий Дарбина–Уотсона
- •8.3.1. Устранение автокоррел, описыв.Авторегрессионной схемой 1го порядка в общем случае. Поправка Прайса – Уинстена.
- •9.2, 9.3 Мультиколлин-ть: способы ее обнаружения и устранения.
- •10. Обобщенный мнк и его исп-ие для оценки эфф-ти методов определения параметров уравнения регрессии.
- •11.1.Фиктивные переменные для пространственных выборок и временных рядов.
- •11.2.Фиктивные переменные для коэф-та наклона ур-ия регрессии.
- •11.3 Тест Чоу.
- •12.1 Линеаризация уравнения регрессии путем замены переменных.
- •12.2 Линеаризация уравнения регрессии с использованием логарфмического преобразования (степенные и показательные функции).
- •12.3 Представление случайного члена в преобразованных нелинейных ур-ях регрессии.
- •12.4 Определение параметров нелин-го ур-ия герессии, не приводимого к лин-му ур-ию.
- •12.5 Выбор вида ур-ия регрессии с использ-ем теста Бокса-Кокса.
- •13.1 Общая характеристика временных рядов. Трендовые модели.
- •13.2 Предварительный анализ временных рядовю. Метод Ирвина.
- •13.3 Сглаживание временных рядов экономич. Показ-ей.
- •13.5 Замещающие переменные и их использование при построении уравнения регрессии (общие сведения).
- •13.6 Непреднамеренное использование замещающих переменных.
- •13.7 Лаговые переменные и их использование пи построении уравнения регрессии(общие сведения).
- •14.1 Система линейных одновременных уравнений слоу (общие сведения)
- •14.2 Структурная и приведённая формы слоу.
- •14.3 Косвенный метод наименьших квадратов (кмнк) и его использование для определения параметров слоу.
- •14.4 Метод инструментальных переменных (мип) и его применение для параметров уравнения регрессия (общий случай)
- •14.5 Метод инструментальной переменной (мип) и его применение для слоу.
- •14.6 Идентифицируемость слоу.
- •14.7 Двухшаговый метод наименьших квадратов.
- •14.8 Трехшаговый мнк.
4.1 Общие положения.
После определ-я вида и парам-ров матем.модели в виде ур.регрессии необх.произвести оценку ее адекватности и точности. И только после этого использ.ее (модель) для анализа, прогнозир-я и управл-я эк.процессов.
Под адекватностью модели понимают в соотв.с моделями те св-ва, кот.выбраны исследов-лем в кач-ве важнейших, при этом полного соответствия моделей и объекта никогда не бывает. Если в кач-ве объекта принят числовой ряд, то модель счит-ся адекватной, если она отражает систематические компоненты этого ряда.
3.2 Отбор факторов-аргументов.
Осн.задача, стоящая при выборе фак-ров, включаемых в корреляционную модель, закл.в том, чтобы ввести в анализ все осн.фак-ры, влияющие на уровень изучаемого явл-я, а колеблемость этих фак-ров объясняла подавляющую часть колеблемости рез-тативного признака. Однако введение в модель большого числа фак-ров нецелесообразно, правильнее отобрать только сравнительно небольшое число осн.фак-ров, находящихся предположительно в корреляционной связи с выбранным функциональным показ-лем.
Чрезмерное увел-е числа фак-ров может не прояснить, а, наоб., затушевать картину множественных связей. Непосредственный отбор фак-ров-аргументов для включения их в корреляционую модель должен осуществляться на основе качественного теоретико-эк-кого анализа, исходя из целей и задач исслед-я. Наряду с фак-рами в анализ необх.вводить и так наз.глубинные фак-ры, действующие опосредованно. При помощи априорного теоретического анализа, часто нельзя выявить не только меру, но даже направление влияния того или иного фак-ра для изучаемых эк-ких показ-лей. Нпр., показ-ли структуры затрат.
Качественный теоретич.анализ при 1ом приближении не позволяет ответить на вопр.о существенности влияния отобранных фак-ров. Поэт.в практике корреляционного анализа широкое распространение получил так наз.двухстадийный отбор. В соотв.с ним в модель вкл-ся все предварительно отобранные фак-ры. Затем среди них, на основе специальной количественной оценки и дополнительно кач-ного анализа выявляются несущественно влияющие фак-ры, кот.постепенно отбрасываются пока не останутся те, относительно которых можно утверждать, что имеющийся стат.материал согласуется с гипотезой об их совместном существенном влиянии на зависимую переменную при выбранной форме связи.
Своё наиболее законченное, выражение двухстадийный отбор получил в методике так наз.многошагового регрессионного анализа, при кот.отсев несущественных фак-ров происх.на основе показ-лей их значимости, в частности, на основе величины taj - расчетном значении критерия Стьюдента.
При предварительном отборе фак-ров, включаемых в анализ, к ним предъявляются специфич.требования. Прежде всего, показа сети, выражающие эти фак-ры должны быть колич-но измеримы. В некот.случаях, используя соврем.матем.аппарат, можно учесть и кач-ные показ-ли. Однако такой учет требует доп.процедур формализации этих показ-лей.
Фак-ры, вкл-мые в модель, не должны находиться м/у собой и функциональной или близкой к ней связи. Наличие таких связей носит название мультиколлинеарности. Мультиколлинеарность свидет-ет о том, что некот.фак-ры характеризуют одну и ту же сторону изучаемого явления. Поэт.их одновременное включение в модель нецелесообразно, т.к.они в определенной степени дублируют др.друга. Если нет особых предположений, говорящих в пользу одного из этих фак-ров, следует отдавать предпочтение тому из них, кот.хар-ется большим коэфф-том парной (или частной) корреляции или вносит в ур-е регрессии наибольший вклад, т.е.дает меньшую остаточную дисперсию.
Использ-е для отбора включаемых в модель фак-ров коэфф-тов парной корреляции оправдано тем, что они служат фактически концентрированным выражением влияния на изучаемый показ-ль всей функциональной связанной группы фак-ров. С этой т.зрения коэфф-т парной корреляции более предпочтителен, чем коэфф-т частной корреляции. С др.стороны, мультиколлинеарность приводит к весьма нежелательным последствиям. В этом случае матрица системы нормальных ур-ний оказывается плохо обусловленной, что ведёт за собой невозм-ть получения (или неустойчивость) рез-татов реш-я.
Выбор фак-ров, включаемых в модель, зачастую предопределяется возм-тью получ-я исходной статистической инф-ции. По многим важным для анализа хоз.деят-ти фак-рам в годовых отчётах предприятий нет соответствующих данных, и их получают в рез-тате спец.обследований.