
- •1.Предмет, задачи и методы эконометрики.
- •2.1 Общие положения.
- •2.2 Метод наименьших квадратов.
- •2.3 Свойства оценок полученных мнк.
- •3.1 Выбор функционального показателя.
- •4.1 Общие положения.
- •3.2 Отбор факторов-аргументов.
- •3.3. Выбор формы связи
- •3.4 Отбор исходных данных.
- •4.2 Проверка случ-ти колебаний уровня остаточной последоват-ти.
- •4.4 Проверка рав-ва матем.Ожидания случайной компоненты нулю.
- •4.3 Проверка соответствия распределения случ.Компоненты нормальному з-ну распредел-я.
- •4.5 Проверка независ-ти значений уровней случайной компоненты.
- •4.6 Определение точности модели.
- •5.1 Линейные ур-я регрессии. Закон сложения дисперсий.
- •5.2 Коэф.Парной и частной коррел., коэф.Эластичности.
- •5.3 Коэф.Множественной коррел.И детерминации.
- •6.1 Критерий Фишера.
- •6.2 Критерий Стьюдента.
- •7.1.Гетероскедастичность остатков в ур.Регрессии и ее последствия.
- •7.2.1. Тест ранговой корреляции Спирмена.
- •7.2.2.Тест Голфенда-Квандта.
- •7.2.3 Тест Глейзера.
- •7.3 Методы устранения гетероскедастичности.
- •8.1 Автокорреляция (остатков) и связанные с ней факторы.
- •8.2. Обнаруж-е автокоррел.1-го порядка. Критерий Дарбина–Уотсона
- •8.3.1. Устранение автокоррел, описыв.Авторегрессионной схемой 1го порядка в общем случае. Поправка Прайса – Уинстена.
- •9.2, 9.3 Мультиколлин-ть: способы ее обнаружения и устранения.
- •10. Обобщенный мнк и его исп-ие для оценки эфф-ти методов определения параметров уравнения регрессии.
- •11.1.Фиктивные переменные для пространственных выборок и временных рядов.
- •11.2.Фиктивные переменные для коэф-та наклона ур-ия регрессии.
- •11.3 Тест Чоу.
- •12.1 Линеаризация уравнения регрессии путем замены переменных.
- •12.2 Линеаризация уравнения регрессии с использованием логарфмического преобразования (степенные и показательные функции).
- •12.3 Представление случайного члена в преобразованных нелинейных ур-ях регрессии.
- •12.4 Определение параметров нелин-го ур-ия герессии, не приводимого к лин-му ур-ию.
- •12.5 Выбор вида ур-ия регрессии с использ-ем теста Бокса-Кокса.
- •13.1 Общая характеристика временных рядов. Трендовые модели.
- •13.2 Предварительный анализ временных рядовю. Метод Ирвина.
- •13.3 Сглаживание временных рядов экономич. Показ-ей.
- •13.5 Замещающие переменные и их использование при построении уравнения регрессии (общие сведения).
- •13.6 Непреднамеренное использование замещающих переменных.
- •13.7 Лаговые переменные и их использование пи построении уравнения регрессии(общие сведения).
- •14.1 Система линейных одновременных уравнений слоу (общие сведения)
- •14.2 Структурная и приведённая формы слоу.
- •14.3 Косвенный метод наименьших квадратов (кмнк) и его использование для определения параметров слоу.
- •14.4 Метод инструментальных переменных (мип) и его применение для параметров уравнения регрессия (общий случай)
- •14.5 Метод инструментальной переменной (мип) и его применение для слоу.
- •14.6 Идентифицируемость слоу.
- •14.7 Двухшаговый метод наименьших квадратов.
- •14.8 Трехшаговый мнк.
8.3.1. Устранение автокоррел, описыв.Авторегрессионной схемой 1го порядка в общем случае. Поправка Прайса – Уинстена.
Наиб. лучший способ устранения – это опред-ть фактор, кот.вызывает авт-цию остатков и вкл.его в ур-ие регрессии. Однако, данный способ очень часто не может быть реализован или в связи с незнанием этого фактора или трудностью его измерения.
Поэтому исп-ют др.способы. Допустимым имеем ур-е регрессии: уt = α+βxt+Ut (1); уt-1 = α+βxt-1+Ut-1 (2) умножим на ρ и отнимем от (1): yt-ρ*yt-1= α (1-ρ) + β(xt-ρt-1) + Ut – ρ*Ut-1 (3); у’t= α*γ+β*x’t+ήt (4).
Метод Прайса-Уинстена. Недостатком такого подхода явл.то, что в сист.ур-ний вида (4) отсутств.1ое наблюдение. Сниж-е кол-ва наблюдений приводит к уменьш.числа степеней свободы и соотв.к сниж-ю эффект-ти МНК оценки. Что особ.характ-но для ЭММ и это приводит к сниж-ю эффект-ти оценок, соизмер.со сниж.эффект., вызванной автокоррел.остатка. однако в сист.ур.вида (4) остатки не завис.др.от др., а значит остаток в (1) не завис.от др.остатков, т.е.не связан с ним. След-но, (1) ур.можно вкл.в сист.ур.вида(4). Однако при таком приеме 1ое наблюд-е будет иметь неоправданно большой вес среди др.наблюдений, особ.при большом знач.ρ.
Поправка Прайса-Уинстена. Для того, чтобы уравновесить след.наблюд.с последующим., необх.умнож.его на коэфф. k=√1-ρ² и в этом случае устраняется чрезмерное влияние 1го наблюд-я.
8.3.2. Метод Кокрана-Оркатта. Метод Хилдрета – Лу.
Метод Кокрана-Оркатта.
Данный метод исп-ся
для устранения автокоррел.итерационный
хар-тер и вкл.след.этапы: 1.оцениваем
исходное регрессионное ур-е, т.е. находим
λ и β.
2.вычисляем остатки
3.находим:
4.исп-я найденный знач.строим сист.ур.вида: у’t= α*γ+β*x’t+ήt. 5.решив с пом.МНК сист.ур.находим новые оценки α и β. Затем повторяем этап 2.
Процесс повторяется до тех пор, пока не будет получена требуемая точность сходимости в оценках α и β
Метод Хилдрета – Лу.
В данном методе
исслед-ль задает интервал изм-я величины
ρ,
допустим в пределах
Для каждого знач-я ρ
производится
оценка параметров α и β из ур-я: yt-ρ*yt-1=
α (1-ρ) + β(xt-ρt-1)
+ Ut
– ρ*Ut-1.
Затем из полученных рез-татов выбир-ся
такой, кот.дает минимальную стандартную
ошибку для преобразованного ур-я. Исп-мые
в этом ур-ии знач-я ρ,
α и β принимаются за искомые. В сл., когда
статистика Дарбина – Уотсона указ.на
очень тесную положительную автокоррел.,
можно использ.упрощенную процедуру, в
кот.принимается ρ=1.
В этом сл.ур-е принимает след. вид:
9.2, 9.3 Мультиколлин-ть: способы ее обнаружения и устранения.
Мульт-сть –
это коррелир-ть 2х или неск-ких объясняющих
переменных в ур-ии регрессии. Оценка
коэф-та ур-ия регрессии может оказаться
незначимой не только из-за несущественности
данного фактора, но и из-за того, что
трудно разграничить воздействие на
завершающую переменную 2-х или неск.
факторов. Это обычно возникает в том
сл.когда факторы линейно связаны м/д
собой и меняются синхронно. Природу
мульт-ти наиб.наглядно можно выявить
на примере совершенной мульт-ти , т.е. в
сл.если ф-ры функционально связаны друг
с другом. Пусть ур-ие регрессии им.вид:
(1)
(2)
Используя соотношение (1) и (2) можем переписать в сл.виде:
или
Используя
и
МНК находим оценки:
,
но в этом сл.имеем одно ур-ие с 2-мя
неизв-ми и следовательно найти значение
оценок b1
и b2
невозможно.
В реальности имеем
несовершенную мульт-ть, т.е. стахост.линейную
связь м/у x1
и x2.
Оценка этой связи находится путем
расчета
.
Чем ближе
к 1, тем ближе несовершенная мульт-ть к
совершенной, и тем менее надежными будут
оценки коэф-та регрессии при этих
переменных.
Небольшое смещение ведет к большим изменениям признака. В эк.исследованиях счит.,что предельным значением коэф-та парной корреляции м/д двумя факторами д.б. 0,8. Устранение мульт-ти ведется путем искл-и одного из фак-ров из ур-ия регрессии. Искл-ют тот фактор, кот.: по мнению исслед-ля считается менее значимым; менее высокий коэф-т (r) с результат.переменной (y); более высокий r с др.факторами. Другие пути: изменить выборку