Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые шпоры (2).doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
522.75 Кб
Скачать

1.Предмет, задачи и методы эконометрики.

Предметом эконометрики – явл.фак-ры, формирующие разв-е эк-ких явлений и процессов.

Эконометрика – это наука о способах построения эк-матем.моделей. Задачей эк-рики явл.построение эк.моделей, позвол.обоснов.процесс управленческих решений. Матем.модели в эк-ке исп-ся для анализа происх.процесссов, их прогнозиров-я и поиска управленч.воздействий, позв-щих получ.желаемый рез-тат. Осн.методами, исп.в эк-рии, явл. регрессионный и кареляционный анализ.

Регрессионный позвол.найти количеств.коном факторов хоз деятельности наиболее распрострон. 0000000000000000000000000000000000000000000000000етрики явл. прогнозированиепроизв.путем примен. эконометр0000000000000000000000000000000000000000000000000000000000000000связь м/у факторным и результативным признаком. При этом появл.возм-ть найти на ск-ко м. явлений льтативн.прииз. колич.лиза.

00000000000000000000000000000000000000000000000000000000000000000000000000000000000изм-ся результативный празнак при изм.факторного признака на 1 ед.

Корреляционный позвол.выявить наличие/отсутствие устойчивых стат.взаимосв.м/у факторным и результативным признаком. Кр.того, он позвол.оценить стат.надежность выявлен.взаимосвязей и найти доверительный интервал, в кот.нах-ся истинные знач-я искомых парам-ров.

Для построения модели необх: 1.Сформулировать предмет и цели исслед-я 2.Выделить структурные или функц.эл-ты системы в соотв. данной цели 3.Качественно описать связь м/у эл-тами 4.Ввести обознач-я и формализ.взаимосвязи м/у эл-тами, т.е. построить матем.модель 5.Определить параметры выбранной матем.модели 6.Провести расчеты по матем.модели и сделать анализ получ.рез-татов и при необх-ти уточнить построен.матем.модель.

2.1 Общие положения.

В случае функциональной завис-ти у=α+β*х каждому знач-ю Х соотв-ет строго определенное знач-е у.

Для корреляц.завис-ти каждому знач-ю Х соотв-ет ряд распредел-я у.

уi=α + βxi+i - ур-е регрессии ху, где i-случайная составляющая, α,β- коэф.ур-я

Ур.регрессии показ.как в среднем изм-ся у при изм.х. В завис-ти от того, ск-ко фак-ров исп-ся в ур.регрессии, она мож.быть: простой (однофакторной) и многофакторной (если неск-ко х). В общем виде зад.выглядит след.обр.: имеется достаточно мощная стат.совок-ть, распределенная по m признакам, один из кот.результативный, а остальные факторные, требуется найти yi=f(xi1;xi2;...;xip), кот.наилучш.обр. апроксимирует эту стат.совок-ть. yi=Ai*Ki *Li *е.

2.2 Метод наименьших квадратов.

Задачу можно представ.: yi=f(xij;aj) (1), где i=1,2...n – число наблюдений, j= 0,1,2….p – число факторов.

Если бы знач-я хij и уi находились бы точно, то для нахождения парам-ров аj достаточно было бы сделать р+1 измерений. Однако знач-я уi и хij известны не точно. Кр.того, на у могут влиять факторы, кот.не учтены в ур.(1), поэт.никакие (р+1)измерения не позвол.определить истинное знач-е парам-ров аj. В связи с этим производят n измерения, кот. существенно больше, чем (р+1): n>(p+1). В этом случае любая система из р+1 ур-е будет несовместна с др.системой.

Принцип МНК: наивероятнейшими значениями аj будут такие, при кот.сумма квадратов отклонения теор.значений результирующего признака от фактич.значений будет минимальн.