
- •Раздел 1.Теортическая механика……………………………………………… 4
- •Раздел 2.Сопротивление материалов…………………………………………. 20
- •Раздел 3. Детали машин………………………………………………………. 35
- •Введение
- •Раздел 1. Теоретическая механика Основное содержание теоретической механики
- •1.1. Cтатика твердого тела
- •1.1.1. Основные понятия статики
- •1.1.2. Аксиомы статики
- •1.1.3. Типы связей и их реакции
- •1.1.4. Тождественное преобразование систем сил
- •1.1.5. Условия равновесия систем сил Равновесие системы сходящихся сил
- •1.2. Кинематика
- •1.2.1. Основные понятия кинематики
- •1.2.2. Кинематика точки
- •1.2.3. Кинематика твердых тел
- •1.3. Динамика
- •1.3.1. Задачи динамики
- •1.3.2. Основные понятия динамики
- •1.3.3. Аксиомы динамики
- •1.3.4. Общие теоремы динамики
- •Вопросы для самоконтроля по разделу 1
- •Тесты по разделу 1
- •Раздел 2. Сопротивление материалов
- •2.1. Основные понятия
- •2.2. Внутренние силы и напряжения
- •2.3. Эпюры внутренних сил, напряжений и перемещений
- •2.4. Типы деформаций
- •2.5 Принципы расчета на прочность и жесткость
- •2.6 Механические характеристики материалов
- •2.7 Геометрические характеристики плоских сечений
- •2.8.Определение напряжений и деформаций при статическом нагружении
- •2.9 Устойчивость сжатых стержней
- •2.10 Определение напряжений и деформаций при действии циклических и динамических нагрузок
- •Литература: 2 , стр. 544…566; 507…54 Вопросы для самоконтроля по разделу2
- •Тесты по разделу 2
- •Раздел 3. Детали машин
- •3.1. Основные критерии работоспособности
- •3.2. Виды нагрузок
- •3.3. Соединения деталей
- •3.4. Механические передачи
- •Где общ – общий кпд привода, равный произведению частных кпд отдельных передач составляющих привод:
- •3.5. Валы и опоры валов
- •3.6. Муфты
- •Вопросы для самоконтроля
- •Тесты по разделу
- •4. Решение тренировочных заданий
- •Пример 4.2
- •Пример 4.3
- •Пример 4.4
- •Пример 4.5
- •Пример 4.6
- •Пример 4.8
- •Пример 4.9
- •Пример 4.10
- •Пример 4.11
- •Решение
- •Пример 4.12
- •Пример 4.13
- •Пример 4.14
- •5. Тесты по дисциплине
- •Ответы на тесты по разделам
- •Теоретическая и прикладная механика
1.1.4. Тождественное преобразование систем сил
Преобразование
сходящейся системы сил
Равнодействующая
R двух сходящихся сил
находится
на основании аксиомы о параллелограмме
сил.(рис.1.10). Геометрическая сумма любого
числа сходящихся сил может быть
определена путем последовательного
сложения двух сил или способом построения
векторного многоугольника (рис.1.17).
Вывод:
система сходящихся сил (
n)
приводится к одной равнодействующей
силе
.
F3
F3x
F2x
F1x
Рис.1.17 Рис.1.18
Аналитически равнодействующая сила может быть определена через ее проекции на оси координат
,
(1.3)
Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось (рис.1.18). .Rx = F1 x + F2 x +F3 x , или в общем виде Rx = Fkx (1.4)
С учетом ( 1.4) равнодействующая определяется выражением
,
(1.5)
Преобразование произвольной системы сил. Применить правило параллелограмма сил непосредственно к произвольной системе сил нельзя, так как линии действия сил не пересекаются в одной точке. Предварительно систему сил приводят к одному центру на основании теоремы о параллельном переносе силы.
Теорема. Силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится.
В
результате указанного преобразования
получается сходящаяся система сил и
сумма моментов пар сил. Действие
сходящейся системы сил заменяют
действием суммарной силы, действие
моментов - суммарным моментом.
Суммарный вектор
называют главным
вектором
системы сил, суммарный момент
- главным
моментом
системы сил.
Вывод. Произвольная система сил в результате тождественного преобразования приводится к главному вектору и главному моменту системы сил.