
- •Вопросы к государственному междисциплинарному экзамену по специальности
- •230201.65 «Информационные системы в технике и технологиях»
- •Информатика
- •1. Представления информации в вычислительных системах. Позиционные и непозиционные системы исчисления.
- •2. Представление чисел с фиксированной и плавающей запятой. Операции над числами с плавающей запятой.
- •3. Алгебраическое представление двоичных чисел. Прямой, дополнительный и обратный коды.
- •4. Арифметические операции в двоичной системе счисления.
- •5. Восьмеричная, шестнадцатеричная и двоично–десятичные системы счисления.
- •Перевод чисел из двоичной системы в шестнадцатеричную
- •6. Логические основы построения компьютера.
- •7. Элементы алгебры логики. Выполнение логических операций на компьютере.
- •8.Логический синтез вычислительных схем.
- •9. Общие принципы построения персональных компьютеров.
- •10. Структурная схема и основные компоненты персонального компьютера.
- •11. Функциональная и структурная организация компьютера Общие принципы функциональной и структурной организации эвм
- •12. Основные типы вычислительных процессов.
- •13. Основные принципы и приемы процедурного программирования.
- •14. Основные принципы и приемы объектно-ориентированного программирования.
- •15. Структурное программирование. Принцип локализации имен. Модульное построение программ.
- •16. Понятие рекурсии. Прямая и косвенная рекурсии.
- •17. Структура типов данных языков программирования.
- •18. Распределение памяти под объекты программы. Статическая и динамическая память.
- •19. Списковые динамические структуры. Стеки. Деки. Очереди. Бинарные деревья.
- •Прикладное программирование
- •1С: Предприятие как проблемно-ориентированная прикладная система. Подсистемы и компоненты среды 1с: Предприятие.
- •Понятие конфигурации 1с: Предприятия. Типы данных. Иерархия объектов. Агрегатные и подчиненные объекты. Типы значений объектов конфигурации.
- •Виды программных модулей 1с: Предприятия. Понятие контекста. Глобальный контекст задачи и локальный контекст модуля.
- •Справочники, документы и журналы документов среды 1с: Предприятие.
- •Подсистема «Оперативный учет» среды 1с: Предприятие. Понятие регистра. Виды регистров.
- •Точка актуальности итогов в среде 1с: Предприятие и ее связь с последовательностями и движениями регистров.
- •Запросы к данным в среде 1с: Предприятие.
- •Подсистема «Расчет» среды 1с: Предприятие. Понятие вида расчета. Журналы расчетов.
- •Подсистема «Управление распределенной информационной базой» среды 1с: Предприятие.
- •Администрирование в среде 1с: Предприятие. Пользовательские интерфейсы и права пользователя.
- •Информационные основы обработки данных
- •Базы данных и системы управления базами данных. Роль и место банков данных в информационных системах.
- •Уровни представления данных: концептуальный, логический, физический.
- •Понятие модели данных. Иерархическая, сетевая, реляционная модели данных, их типы структур, основные операции и ограничения.
- •Основные понятия реляционной модели данных: отношение, экземпляр, атрибут. Объектные и связные отношения. Операции над отношениями.
- •Нормализация отношений в реляционной базе данных. Нормальные формы.
- •Инфологическое проектирование базы данных.
- •Программная реализация бд и субд.
- •Глава 2. Разработка базы данных по рынку бытовой химии.
- •Эксплуатация системы: наполнение базы данных реальными данными, поддержание
- •Пользователи банков данных. Преимущества централизованного управления данными. Архитектура банка данных.
- •Строение пакета субд. Компиляция и интерпретация программ.
- •Многопользовательские системы. Файл-серверная и клиент-серверная технологии. Трехзвенная архитектура.
- •2. Файл-серверная архитектура программы.
- •Операционные системы
- •1.Принципы построения операционных систем (ос), вычислительный процесс и его реализация с помощью ос; основные функции ос.
- •4.Сетевые ос и протоколы передачи информации, организация управления доступом и защиты ресурсов ос
- •5.Основные механизмы безопасности: средства и методы аутентификации в ос, модели разграничения доступа, организация и использование средств аудита; администрирование ос.
- •6.Классификация вычислительных сетей. Одноранговая сеть. Сети с централизованным управлением.
- •7.Сетевые компоненты ос семейства Windows. Сетевые протоколы. Сетевые клиенты.
- •Организация общего доступа к сетевому ресурсу.
- •Принципы управления ресурсами в операционной системе; управление вычислительными процессами, вводом-выводом, реальной памятью; управление виртуальной памятью. Управление процессами
- •Функции базовой подсистемы ввода-вывода
- •Физическая организация памяти компьютера
- •Функции системы управления памятью
- •Простейшие схемы управления памятью
- •Понятие виртуальной памяти
- •11.Состояния процессов, наследование ресурсов, тупиковые ситуации, обработка исключений, сохранение и восстановление процессов
- •12.Операции над процессами. Pcb и контекст процесса. Одноразовые операции. Многоразовые операции. Переключения контекста.
- •13.Планирование заданий пользователей. Критерии планирования и требования к алгоритмам. Вытесняющее и невытесняющее планирование.
- •Взаимодействие процессов в ос, синхронизация процессов, обмен сообщениями. Взаимодействие процессов
- •Средства межпроцессного взаимодействия
- •Динамические, последовательные и параллельные структуры программ. Логическая организация механизма передачи информации. Нити исполнения.
- •Информационные сети
- •1. Типы вычислительных сетей.
- •2. Стандартизация в компьютерных сетях. Понятие протокола и интерфейса.
- •Сетевые интерфейсы:
- •3. Эталонная модель взаимодействия открытых систем – osi. Графическое представление модели.
- •Взаимодействие уровней
- •4. Прохождение запроса между двумя узлами сети.
- •5. Функции и сетевые задачи уровней модели osi. Прикладной уровень (Application layer)
- •Уровень представления (Presentation layer)
- •Сеансовый уровень (Session layer)
- •Транспортный уровень (Transport layer)
- •Сетевой уровень (Network layer)
- •Канальный уровень (Data Link layer)
- •Физический уровень (Physical layer)
- •6. Сетевые топологии.
- •7. Строение сетей Ethernet. Домен коллизий в сетях Ethernet.
- •8. Повторители. Мосты. Концентраторы. Коммутаторы. Маршрутизаторы. Повторитель
- •Различия между коммутаторами и мостами
- •9. Сети Token Ring. Метод доступа к разделяемой среде для сетей Token Ring .
- •10. Технология Fast Ethernet.
- •11. Технология Gigabit Ethernet.
- •12. Технология 100 vg-AnyLan. Суть метода доступа - приоритетные требования в технологии 100 vg-AnyLan.
- •13. Технология fddi. Особенности метода доступа fddi.
- •14. Задачи сетевого уровня открытых систем osi. Понятие «Подсеть», «Сеть» и «Составная сеть».
- •15. Многоуровневая структура стека tcp/ip. Уровень межсетевого взаимодействия, основной (транспортный) уровень, прикладной уровень, уровень сетевых интерфейсов.
- •Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Прикладной уровень
- •16. Механизм гнезд и мультиплексирование соединений.
- •17. Типы адресов стека tcp/ip. Локальные адреса. Ip – адреса. Символьные доменные имена.
- •Корпоративные информационные системы
- •Структура корпоративной ис. Функциональные компоненты кис. Классификация кис.
- •Структура корпораций и предприятий; архитектура, эксплуатация и сопровождение информационных систем ис.
- •Понятие и структура erp – системы. Пример erp – систем.
- •Понятие и структура olap – системы. Архитектура olap – приложений.
- •Понятие гиперкуба. Метки. Иерахии и уровни. Срезы гиперкуба.
- •Операции манипулирования данными в гиперкубе. Агрегация данных в гиперкубе.
- •Разреженный гиперкуб данных. Бинарное представление гиперкуба данных. Выборка данных из гиперкуба.
- •Карта заполненности гиперкуба данных. Одномерная, двумерная и трехмерная проекции карты. Организация доступа к данным в гиперкубе. Агрегация разреженного гиперкуба данных.
- •Многомерное хранение данных. Сравнение оперативных и аналитических ис. Концепция хранилища данных.
- •Компоненты хранилища данных. Проблемы интеграции данных в информационном хранилище. Реализация хранилищ данных. Витрины данных.
- •Понятие Data Mining. Приложения Data Mining.
- •Разведочный анализ данных и его методы. Типы закономерностей, используемых Data Mining.
- •Классификация систем Data Mining.Нейронные сети в Data Mining.
- •Виды команд сетевых субд. Виды блокировки файлов и записей. Обработка ошибок сетевыми приложениями. Тестирование сетевого приложения.
- •Буферизация редактирования данных. Обновление данных с использованием буферизации. Работа с транзакциями.
- •Основные понятия web-технологий.
- •Сервисы Интернет.
- •Электронная почта
- •Списки рассылки
- •Система гипермедиа www
- •Сервисы irc, icq и т.П.
- •3. Служба dns Отображение символьных адресов на ip-адреса: служба dns
- •Серверные языки программирования
- •Технологии Java. Особенности версий jdk.
- •Виды Java-приложений.
- •Принципы ооп в Java-технологиях.
- •Обзор операторов языка программирования Java.
- •Обработка исключений в Java.
- •Событийные модели в Java.
- •Программирование Java-апплетов
- •Принципы программирования оконных приложений на Java.
- •Элементы web-дизайна. Основные понятия, влияющие факторы.
- •Системы навигации сайта.
- •Понятие хостинга
- •1. Типы и преобразование данных в клиентских сценариях.
- •2. Типы данных в php-приложениях
- •3. Типы данных в Java-приложениях.
- •4. Валидаторы в web-приложениях. Разновидности.
- •5. Клиентские валидаторы в web-приложениях.
- •6. Серверные валидаторы в web-приложениях.
- •7. Основные понятия языков разметки. Формы.
- •8. Технология css.
- •9. Организация взаимодействия страниц во фреймовой структуре.
- •10. Плавающие фреймы (iFrame) на web-страницах
- •11. Понятие о серверных сценариях web-приложений.
- •Организация авторизованного доступа в web-приложениях.
- •Сессионные переменные в web-приложениях.
- •Представление о стеке протоколов tcp/ip.
- •Интегрированные среды разработки web-приложений.
- •Модель "клиент-сервер" для web-приложений.
- •Клиентские сценарии web-приложений.
- •Обработка событий в клиентских сценариях web-приложений.
- •Программирование типовых функциональных блоков серверных сценариев php-web-приложений.
- •9.Организация взаимодействия серверных сценариев с субд с использованием php и MySql.
- •Обзор среды разработки Java-приложений на примере NetBeans.
- •Этапы разработки Java-приложений в среде NetBeans.
- •Структура справочной системы Java. Утилита javadoc.
- •3. Основные понятия теории графов, граф, подграф, сеть, дерево, связность. Операции над графами, их свойства.
- •4. Нахождение минимального и максимального пути, задача о максимальном потоке.
- •5. Основные понятия логики высказываний, методы представления логических функций, логические операции, их свойства, конъюнктивные и дизъюнктивные нормальные формы.
- •Элементарные функции алгебры логики
- •Фал одного аргумента
- •Инверсия
- •Конъюнкция
- •Дизъюнкция
- •Логическая равнозначность
- •Импликация
- •Эквивалентности
- •Сложение по mod 2
- •Правило де Моргана
- •Понятие функциональной полноты фал
- •Минимизация фал и ограничения при ее рассмотрении
- •Понятие покрытия
- •Метод минимизации фал по Квайну
- •6. Общезначимость, противоречивость, выводимость, теоремы о выводимости, метод резолюций для логики высказываний.
- •Метод резолюций для логики высказываний
- •7. Основные понятия логики предикатов первого порядка, кванторы, предваренные нормальные формы, избавление от кванторов.
- •8. Выводимость в логике предикатов первого порядка, унифицирующие подстановки, метод резолюций для логики предикатов первого порядка. Метод резолюций для логики предикатов первого порядка
- •9. Основные понятия теории автоматов, виды автоматов, методы представления автоматов, абстрактный и структурный автомат. Метод синтеза автоматов по граф-схеме алгоритма.
- •10. Понятие модели, алгоритмический и функциональный подходы к моделированию. Виды моделей, виды математических моделей, основные этапы моделирования.
- •1. Основные понятия и определения теории надежности.
- •2. Математическая модель функционирования информационных систем
- •3.Способы описания надежности функционирования информационных систем.
- •Методы анализа надежности. Топологический метод анализа надежности.
- •Анализ надежности восстанавливаемых систем.
- •Факторы, влияющие на надежность информационных систем.
- •Классический метод оптимизации судовых систем. Метод множителей Лагранжа.
- •Градиентные методы оптимизации судовых систем.
- •Оптимизация судовых систем на основе симплексных методов с постоянным и переменным шагами.
- •Оптимизация судовых систем на основе метода деформированного многогранника.
- •Оптимизация судовых систем на основе метода скользящего допуска.
- •Задачи многокритериальной оптимизации. Выбор оптимальных решений на основе безусловного и условного критериев качества.
- •Формирование критериев качества на основе экспертных оценок. Методы ранга, парных сравнений и непосредственной оценки.
- •Определение полиномиальных моделей судовых систем на основе метода наименьших квадратов. Система нормальных уравнений.
- •Матричная форма системы нормальных уравнений. Информационная матрица.
- •Исследование судовых систем на основе полного факторного эксперимента.
- •Исследование судовых систем на основе планов второго порядка.
- •Исследование судовых систем на основе планов третьего порядка.
- •Ранжирование параметров судовых систем на основе дробного факторного эксперимента.
- •Ранжирование параметров судовых систем на основе метода случайного баланса.
- •Определение программной системы.
- •Аксиоматика сложных систем.
- •Методология программирования: каскадная, итерационная, спиральная.
- •4. Основные задачи поддержки процесса разработки программных систем: методическая, организационная, инструментальная, кадровая, технологическая.
- •5. Стратегии «направленности» разработки программных систем: «сверху вниз», «снизу вверх», «изнутри к границам», «от границ внутрь».
- •6. Основные понятия программного обеспечения. Классификация программного обеспечения.
- •7. Повышение надежности программного обеспечения введением избыточности: информационной, программной, временной.
- •8. Принципы и методы разработки надежного программного обеспечения: предупреждения, обнаружения, исправление ошибок, обеспечение устойчивости к ошибкам.
- •9. Основные определения, связанные с обнаружением и исправлением ошибок: тестирование, доказательство, контроль, испытание, аттестация, отладка.
- •10. Структурное или модульное программирование. Стиль разработки, правила написания программ.
- •11. Преобразование неструктурированных алгоритмов к структурному виду: дублирование блоков, введение переменной состояния.
- •12. Понятия модульности, связанности, сцепления.
12.Операции над процессами. Pcb и контекст процесса. Одноразовые операции. Многоразовые операции. Переключения контекста.
Набор операций
Процесс не может перейти из одного состояния в другое самостоятельно. Изменением состояния процессов занимается операционная система, совершая операции над ними. Количество таких операций в нашей модели пока совпадает с количеством стрелок на диаграмме состояний. Удобно объединить их в три пары:
создание процесса – завершение процесса;
приостановка процесса (перевод из состояния исполнение в состояние готовность) – запуск процесса (перевод из состояния готовность в состояние исполнение);
блокирование процесса (перевод из состояния исполнение в состояние ожидание) – разблокирование процесса (перевод из состояния ожидание в состояние готовность).
В дальнейшем, когда мы будем говорить об алгоритмах планирования, в нашей модели появится еще одна операция, не имеющая парной: изменение приоритета процесса.
Операции создания и завершения процесса являются одноразовыми, так как применяются к процессу не более одного раза (некоторые системные процессы при работе вычислительной системы не завершаются никогда). Все остальные операции, связанные с изменением состояния процессов, будь то запуск или блокировка, как правило, являются многоразовыми. Рассмотрим подробнее, как операционная система выполняет операции над процессами.
Process Control Block и контекст процесса
Для того чтобы операционная система могла выполнять операции над процессами, каждый процесс представляется в ней некоторой структурой данных. Эта структура содержит информацию, специфическую для данного процесса:
состояние, в котором находится процесс;
программный счетчик процесса или, другими словами, адрес команды, которая должна быть выполнена для него следующей;
содержимое регистров процессора;
данные, необходимые для планирования использования процессора и управления памятью (приоритет процесса, размер и расположение адресного пространства и т. д.);
учетные данные (идентификационный номер процесса, какой пользователь инициировал его работу, общее время использования процессора данным процессом и т. д.);
сведения об устройствах ввода-вывода, связанных с процессом (например, какие устройства закреплены за процессом, таблицу открытых файлов).
Ее состав и строение зависят, конечно, от конкретной операционной системы. Во многих операционных системах информация, характеризующая процесс, хранится не в одной, а в нескольких связанных структурах данных. Эти структуры могут иметь различные наименования, содержать дополнительную информацию или, наоборот, лишь часть описанной информации. Для нас это не имеет значения. Для нас важно лишь то, что для любого процесса, находящегося в вычислительной системе, вся информация, необходимая для совершения операций над ним, доступна операционной системе. Для простоты изложения будем считать, что она хранится в одной структуре данных. Мы будем называть ее PCB (Process Control Block) или блоком управления процессом. Блок управления процессом является моделью процесса для операционной системы. Любая операция, производимая операционной системой над процессом, вызывает определенные изменения в PCB. В рамках принятой модели состояний процессов содержимое PCB между операциями остается постоянным.
Многоразовые операции
Одноразовые операции приводят к изменению количества процессов, находящихся под управлением операционной системы, и всегда связаны с выделением или освобождением определенных ресурсов. Многоразовые операции, напротив, не приводят к изменению количества процессов в операционной системе и не обязаны быть связанными с выделением или освобождением ресурсов.
Запуск процесса. Из числа процессов, находящихся в состоянии готовность, операционная система выбирает один процесс для последующего исполнения. Для избранного процесса операционная система обеспечивает наличие в оперативной памяти информации, необходимой для его дальнейшего выполнения. Далее состояние процесса изменяется на исполнение, восстанавливаются значения регистров для данного процесса и управление передается команде, на которую указывает счетчик команд процесса. Все данные, необходимые для восстановления контекста, извлекаются из PCB процесса, над которым совершается операция.
Приостановка процесса. Работа процесса, находящегося в состоянии исполнение, приостанавливается в результате какого-либо прерывания. Процессор автоматически сохраняет счетчик команд и, возможно, один или несколько регистров в стеке исполняемого процесса, а затем передает управление по специальному адресу обработки данного прерывания. На этом деятельность hardware по обработке прерывания завершается. По указанному адресу обычно располагается одна из частей операционной системы. Она сохраняет динамическую часть системного и регистрового контекстов процесса в его PCB, переводит процесс в состояние готовность и приступает к обработке прерывания, то есть к выполнению определенных действий, связанных с возникшим прерыванием.
Блокирование процесса. Процесс блокируется, когда он не может продолжать работу, не дождавшись возникновения какого-либо события в вычислительной системе. Для этого он обращается к операционной системе с помощью определенного системного вызова. Операционная система обрабатывает системный вызов (инициализирует операцию ввода-вывода, добавляет процесс в очередь процессов, дожидающихся освобождения устройства или возникновения события, и т. д.) и, при необходимости сохранив нужную часть контекста процесса в его PCB, переводит процесс из состояния исполнение в состояние ожидание.
Разблокирование процесса. После возникновения в системе какого-либо события операционной системе нужно точно определить, какое именно событие произошло. Затем операционная система проверяет, находился ли некоторый процесс в состоянии ожидание для данного события, и если находился, переводит его в состояние готовность, выполняя необходимые действия, связанные с наступлением события (инициализация операции ввода-вывода для очередного ожидающего процесса и т. п.).
Переключение контекста
До сих пор мы рассматривали операции над процессами изолированно, независимо друг от друга. В действительности же деятельность мультипрограммной операционной системы состоит из цепочек операций, выполняемых над различными процессами, и сопровождается переключением процессора с одного процесса на другой.
Давайте для примера упрощенно рассмотрим, как в реальности может протекать операция разблокирования процесса, ожидающего ввода-вывода (см. рис. 5). При исполнении процессором некоторого процесса (на рисунке – процесс 1) возникает прерывание от устройства ввода-вывода, сигнализирующее об окончании операций на устройстве. Над выполняющимся процессом производится операция приостановки. Далее операционная система разблокирует процесс, инициировавший запрос на ввод-вывод (на рисунке – процесс 2) и осуществляет запуск приостановленного или нового процесса, выбранного при выполнении планирования (на рисунке был выбран разблокированный процесс). Как мы видим, в результате обработки информации об окончании операции ввода-вывода возможна смена процесса, находящегося в состоянии исполнение.
Рис. 2.5. Выполнение операции разблокирования процесса. Использование термина "код пользователя" не ограничивает общности рисунка только пользовательскими процессами
Для корректного переключения процессора с одного процесса на другой необходимо сохранить контекст исполнявшегося процесса и восстановить контекст процесса, на который будет переключен процессор. Такая процедура сохранения/восстановления работоспособности процессов называется переключением контекста. Время, затраченное на переключение контекста, не используется вычислительной системой для совершения полезной работы и представляет собой накладные расходы, снижающие производительность системы. Оно меняется от машины к машине и обычно колеблется в диапазоне от 1 до 1000 микросекунд. Существенно сократить накладные расходы в современных операционных системах позволяет расширенная модель процессов, включающая в себя понятие threads of execution (нити исполнения или просто нити).