
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
1.3. Признаки и их классификация
Единицы совокупности обладают определенными свойствами, качествами. Эти свойства принято называть признаками. Например, признаки человека: возраст, образование, занятие, рост, вес, семейное положение и т.д.; признаки предприятия: форма собственности, специализация (отрасль), численность работников, величина уставного фонда, экономическая эффективность его деятельности и т.д.
Статистика изучает явления через их признаки: чем более однородна совокупность, тем больше общих признаков имеют ее единицы и тем меньше варьируются, их значения.
Признаки различаются способами их измерения и другими особенностями, влияющими на приемы статистического изучения. Это дает основание для классификации признаков (табл. 1.2).
Описательные признаки выражаются словесно: национальность человека, разновидность почв, материал стен здания. Описательные признаки подразделяются на номинальные и порядковые. Эти термины взяты из теории измерений. Отличия между ними в том, что номинальные — это описатель-
23
ные признаки, по которым нельзя ранжировать (упорядочивать) данные, а порядковые — это признаки, по которым можно ранжировать данные. Например, пользуясь оценками экспертов, ранжируют фигуристов по технике и артистичности исполнения программы или работников — по мастерству, студентов — по успеваемости и т.д.
Количественные признаки выражаются числами. Они играют главенствующую роль в статистике. Таковы возраст человека, площадь пашни, заработная плата рабочих, население города, доход кооператива и т.д.
Первичные признаки характеризуют единицу совокупности в целом. Это абсолютные величины. Они могут быть измерены, сосчитаны, взвешены и существуют сами по себе независимо от их статистического изучения. Например, площадь пашни, мощность двигателей на предприятии, численность населения города, число автомобилей, произведенных в стране.
Вторичные, или расчетные, признаки не измеряются непосредственно, а рассчитываются. Они являются продуктами человеческого сознания, результатом познания изучаемого объекта. Например, себестоимость единицы продукции, производительность труда, рентабельность, урожайность и т.п. Вторичные признаки представляют собой соотношения первичных признаков: деление объема выпущенной продукции на численность работников дает показатель производительности труда; деление суммы затрат на произведенную продук-
24
цию на число единиц данной продукции дает себестоимость и т.д. Несмотря на расчетный характер, вторичные признаки тоже имеют объективный характер. Процесс познания есть отражение объективных свойств явлений и процессов, и расчеты, статистические методы познания являются таким же необходимым средством отражения объективных свойств совокупности, как измерение, взвешивание. Вторичный — не означает второстепенный. Термин определяет только путь познания: сначала надо измерить значения первичных признаков, а уже потом, во вторую очередь, на основе первичных признаков рассчитать значения вторичных.
Прямые (непосредственные) признаки — это свойства, непосредственно присущие тому объекту, который ими характеризуется. Таковы возраст человека, поголовье коров на ферме, объем продукции завода, численность его рабочих.
Косвенные признаки являются свойствами, присущими не самому объекту, а другим совокупностям, относящимся к объекту, входящим в него. Например, продуктивность коров как косвенный признак фермы. Хотя продуктивность не фермы, а коров — это их прямой признак, но ведь продуктивность характеризует и ферму, которой принадлежат эти коровы (или даже целую область). Такова и оплата труда рабочих по отношению к заводу. Это косвенный признак завода, но очень важный для того, кто собирается поступать на работу и выбирает предприятие.
Практически деление признаков на прямые и косвенные совпадает с их делением на первичные и вторичные.
Признаки различаются в статистике и по характеру их вариации, т.е. по различиям их значений у разных единиц совокупности. Выделяются альтернативные признаки, которые могут принимать только два значения. Таковыми являются признаки обладания или необладания чем-то. Например, все садовые участки по признаку наличия посадок вишни можно разделить на имеющие посадки вишни и не имеющие их. Альтернативным признаком являются пол человека, место проживания (город, село), ходовая система трактора (гусеничный или колесный).
К дискретным относятся количественные признаки, которые могут принимать только целочисленные значения, без
25
промежуточных значений между ними. Это число членов семьи, количество этажей здания, комнат в квартире.
Непрерывные, точнее непрерывно варьирующиеся, признаки способны принимать любые значения, конечно, в определенных границах. К непрерывным относятся расчетные вторичные признаки. Ведь их значения — результат деления, а оно может приводить к любым числам — целым, дробным, иррациональным. На практике нередко значения непрерывных признаков округляют с конечной степенью точности, так что они становятся квазидискретными. С другой стороны, дискретные по существу признаки, например число работников предприятия на 1 января, поголовье коров на ту же дату, имеют такое громадное число возможных значений, что на практике статистика вынуждена обращаться с ними, как с квазинепрерывными. Об этом будет сказано в главах 5 и 6 при обсуждении метода группировок и расчета средних величин.
Моментные признаки характеризуют изучаемый объект в какой-то момент времени, установленный планом статистического исследования. Они существуют на любой момент и характеризуют наличие чего-либо: численность населения, стоимость фондов, количество скота, размеры жилой площади.
К интервальным относятся признаки, характеризующие ¦результаты процессов. Поэтому их значения могут возникать только за интервал времени: год, месяц, сутки, но не на момент времени. Таковы число родившихся, умерших, объем промышленной продукции, надой молока, сумма полученной прибыли. Моментные признаки — характеристики состояния, а интервальные — характеристики процесса. Различие между моментными и интервальными признаками существенно при изучении динамики. Единицы измерения моментных признаков относятся только к характеризуемым ими свойствам объектов, а единицы измерения интервальных признаков содержат еще и указание того отрезка времени, за который определено значение признака. Так, стоимость основных производственных фондов предприятия на 1 января выражается в миллионах рублей, а объем продукции за январь — в тысячах или миллионах рублей за месяц.
26