
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
Рекомендуемая литература
1. Айвазян С. А., Мхитарян В. С. Теория вероятностей и прикладная статистика. Т. 1: Учебник для вузов. — М.: ЮНИТИ, 2001.
2. Закс Л. Статистическое оценивание: Пер. с нем. / Под ред. и с предисл. Ю. П. Адлера и В. Г. Горского. — М.: Статистика, 1976.
3. Козлов А. Ю., Шишлов В. Ф, Пакет анализа MS Excel в экономико-статистических расчетах / Под ред. В. С. Мхитаряна. — М.: ЮНИТИ - ДАНА, 2003.
4. Ниворожкина Л. И., Морозова 3. А. Сборник задач по математической статистике с элементами теории вероятностей РИНХ. - Ростов-на-Дону, 2002.
5. Эддоус М., Стэнсфшд Р. Методы принятия решений: Пер. с англ. / Под ред. И. И. Елисеевой. - М.: ЮНИТИ, 1997.
9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
9.1. Понятие о статистической и корреляционной связи
Современная наука исходит из взаимосвязей всех явлений природы и общества. Объем продукции предприятия связан с численностью работников, мощностью двигателей, стоимостью производственных фондов и еще многими признаками.
Невозможно управлять явлениями, предсказывать их развитие без изучения характера, силы и других особенностей связей. Поэтому методы исследования, измерения связей составляют чрезвычайно важную часть методологии научного исследования, в том числе и статистического.
Различают два типа связей между различными явлениями и их признаками: функциональную, или жестко детерминированную, с одной стороны, и статистическую, или стохастически детерминированную, — с другой. Строго определить различие этих типов связи можно тогда, когда они получают математическую формулировку. Для простоты будем говорить о связи двух явлений или двух признаков, математически отображаемой в форме уравнения связи двух переменных.
Если с изменением значения одной из переменных вторая изменяется строго определенным образом, т.е. значению одной переменной обязательно соответствует одно или не-
320
Однако
механика, электротехника, акустика,
политическая экономия и другие науки
успешно используют представление связей
как функциональных не только в
аналитических целях, но нередко и в
целях прогнозирования. Это возможно
потому, что в простых системах интересующая
нас переменная величина зависит в
основном (скажем, на 99% или даже на 99,99%)
от немногих других переменных или только
от одной переменной, т.е. связь является
хотя и не абсолютно функциональной, но
практически очень близкой к таковой.
Например, длина года (период обращения
Земли вокруг Солнца) почти функционально
зависит только от массы Солнца и
расстояния Земли от него. На самом деле
она зависит в очень слабой степени и от
масс, и расстояния других планет от
Земли, но вносимые ими (и тем более
далекими звездами) искажения функциональной
связи для всех практических целей, кроме
космонавтики, пренебрежимо малы.
321
Стохастически детерминированная связь не имеет ограничений и условий, присущих функциональной связи. Если с изменением значения одной из переменных вторая может в определенных пределах принимать любые значения с некоторыми вероятностями, но ее среднее значение или иные статистические (массовые) характеристики изменяются по определенному закону, связь является статистической. Иными словами, при статистической связи разным значениям одной переменной соответствуют разные распределения значений другой переменной.
В настоящее время наука не знает более широкого определения связи. Все связи, которые могут быть измерены и выражены численно, подходят под определение «статистические связи», втом числе и функциональные. Последние представляют собой частный случай статистических связей, когда значениям одной переменной соответствуют «распределения» значений второй, состоящие из одного или нескольких значений и имеющие вероятность, равную единице. Конечно, качественное различие действительно вероятностных распределений и отдельных значений, имеющих вероятность единицы (достоверных), настолько велико, что хотя функциональные связи и могут рассматриваться как предельный случай статистической связи, все же с полным основанием можно говорить о двух типах связей.
Корреляционной связью называют важнейший частный случай статистической связи, состоящий в том, что разным значениям одной переменной соответствуют различные средние значения другой. С изменением значения признака х закономерным образом изменяется среднее значение признака у, в то время как в каждом отдельном случае значение признака у (с различными вероятностями) может принимать множество различных значений.
Если же с изменением значения признака х среднее значение признака у не изменяется закономерным образом, но закономерно изменяется другая статистическая характеристика (показатели вариации, асимметрии, эксцесса и т.п.), то связь не является корреляционной, но статистической.
Статистическая связь между двумя признаками (переменными величинами) предполагает, что каждый из них имеет случайную вариацию индивидуальных значений относитель-
322
но средней величины. Если же такую вариацию имеет только один из признаков, а значения другого являются жестко детерминированными, то говорят лишь о регрессии. Например, при анализе динамических рядов можно измерять регрессию уровней ряда урожайности (имеющих случайную колеблемость) на номера лет. Но нельзя говорить о корреляции между ними и применять показатели корреляции с соответствующей интерпретацией (гл. 10).
Само слово корреляция ввел в статистику английский биолог и статистик Френсис Гальтон в конце XIX в. Тогда оно писалось как «correlation» (соответствие), но не просто «связь» {relation)., а «как бы связь», т.е. связь, но не в привычной в то время функциональной форме. В науке вообще, а именно в палеонтологии, термин «корреляция» применил еще раньше, в конце XVIII в., знаменитый французский палеонтолог (специалист по ископаемым останкам животных и растений прошлых эпох) Жорж Кювье. Он ввел даже «закон корреляции» частей и органов животных. «Закон корреляции» помогает восстановить по найденным в раскопках черепу, костям и т.д. облик всего животного и его место в системе: если череп с рогами, то это было травоядное животное, а его конечности имели копыта; если же лапы с когтями — то хищное животное без рогов, но с крупными клыками.
Известен следующий рассказ о Кювье и «законе корреляции». В дни университетского праздника студенты решили подшутить над профессором Кювье. Они вырядили одного из студентов в козлиную шкуру с рогами и копытами и подсадили его в окно спальни Кювье. Ряженый затопал копытами и завопил: «Я тебя съем!» Кювье проснулся, увидел силуэт с рогами и спокойно отвечал: «Если у тебя рога и копыта, то по закону корреляции ты травоядное, и съесть меня не можешь. А за то, что не знаешь закона корреляции, получишь двойку!»
Корреляционная связь между признаками может возникнуть разными путями. Первый (важнейший) путь — причинная зависимость результативного признака (его вариации) от вариации факторного признака. Например, признак х — балл оценки плодородия почв, признак у — урожайность сельскохозяйственной культуры. Здесь совершенно ясно логически, какой признак выступает как независимая переменная (фактор) х, какой — как зависимая переменная (результат) у.
323
Второй путь — сопряженность, возникающая при наличии общей причины. Известен классический пример, приведенный крупнейшим статистиком России начала XX в. А. А. Чу-провым: если в качестве признака х взять число пожарных команд в городе, а за признак у — сумму убытков за год в городе от пожаров, то между признаками х и у в совокупности городов России существовала прямая корреляция; в среднем чем больше пожарников в городе, тем больше и убытков от пожаров! Уж не занимались ли пожарники поджигательством из боязни потерять работу? Но дело в другом. Данную корреляцию нельзя интерпретировать как связь причины и следствия; оба признака-следствия общей причины — размера города. Вполне логично, что в крупных городах больше пожарных частей, но больше и пожаров, и убытков от них за год, чем в малых городах.
Третий путь возникновения корреляции — взаимосвязь признаков, каждый из которых и причина, и следствие. Такова, например, корреляция между уровнями производительности труда рабочих и уровнем оплаты 1 ч труда (тарифной ставкой). С одной стороны, уровень зарплаты — следствие производительности труда: чем она выше, тем выше и оплата. Но, с другой стороны, установленные тарифные ставки и расценки играют стимулирующую роль: при правильной системе оплаты они выступают в качестве фактора, от которого зависит производительность труда. В такой системе признаков допустимы обе постановки задачи; каждый признак может выступать в роли независимой переменной х и в качестве зависимой переменной у.