
- •Общая теория статистики
- •Глава 1. Понятие о статистике................. 13
- •Глава 2. Организация статистики. Статистическое наблюдение ...... 32
- •Глава 3. Статистические показатели ............. 82
- •Глава 4. Представление статистических данных: таблицы и графики. 100
- •Глава 5. Средние величины и изучение вариации. ... 120
- •Глава 6. Группировка........................ 172
- •Глава 7. Выборочное наблюдение. Испытание статистических гипотез .. 214
- •Глава 8. Статистическая проверка гипотез........ 270
- •Глава 9. Корреляционно-регрессионный анализ и моделирование статистических связей . . . 320
- •Глава 10. Системы регрессионных уравнений....... 392
- •Глава 11. Статистический анализ неколичественных переменных . 411
- •Глава 12. Статистическое изучение динамики....... 445
- •Глава 13. Индексы ........................... 526
- •Глава 14. Статистическое изучение структуры совокупности и ее изменений ... 597
- •Предисловие
- •Глава 1. Понятие о статистике
- •1.1. Что такое статистика
- •1.2. Статистическая закономерность. Статистические совокупности
- •1.3. Признаки и их классификация
- •1.4. Определение предмета статистики — основа статистической методологии
- •Рекомендуемая литература
- •2 Глава. Организация статистики. Статистическое наблюдение
- •2.1. Организация государственной статистики в Российской Федерации
- •2.2. Важнейшие международные организации и их статистические службы
- •2.3. Требования, предъявляемые к собираемым данным. Формы организации и виды статистического наблюдения
- •2.4. Подготовка статистического наблюдения
- •2.5. Статистическая отчетность
- •2.6. Ошибки статистического наблюдения. Методы контроля данных наблюдения
- •2.7. Реформирование российской государственной Статистики
- •Рекомендуемая литература
- •3. Глава. Статистические показатели
- •3.1. Сущность и значение статистических показателей.
- •3.2. Классификация статистических показателей
- •3.3. Общие принципы построения относительных статистических показателей
- •3.4. Понятие о системах статистических показателей
- •3.5. Функции статистических показателей
- •Рекомендуемая литература
- •4 Глава. Представление статистических данных: таблицы и графики
- •4.1. Статистические таблицы
- •4.2. Основные виды графиков
- •4.3. Картограммы и картодиаграммы
- •Рекомендуемая литература
- •5 Глава. Средние величины и изучение вариации
- •5.1. Однородность и вариация массовых явлений
- •5.2. Средняя арифметическая величина
- •5.3. Другие формы средних величин
- •5.4. Средняя величина как выражение закономерности
- •5.5. Вариация массовых явлений
- •5.6. Построение вариационного ряда. Виды рядов. Ранжирование данных
- •5.7. Структурные характеристики вариационного ряда
- •5.8. Показатели размера и интенсивности вариации
- •5.9. Моменты распределения и показатели его формы
- •5.10. Предельно возможные значения показателей вариации и их применение
- •Рекомендуемая литература
- •6 Глава. Группировка
- •6.1. Значение и сущность группировки
- •6.2. Виды группировок
- •6.3. Многомерные группировки
- •Рекомендуемая литература
- •7 Глава. Выборочное наблюдение. Испытание статистических гипотез
- •7.1. Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод
- •7.2. Способы отбора, обеспечивающие репрезентативность выборки. Виды выборки
- •7.3. Ошибка выборки
- •7.4. Влияние вида выборки на величину ошибки выборки
- •7.5. Задачи, решаемые при применении выборочного метода
- •7.6. Распространение данных выборочного наблюдения на генеральную совокупность
- •7.7. Малая выборка
- •7.8. Примеры применения выборочного метода
- •Рекомендуемая литература
- •8 Глава. Статистическая проверка гипотез
- •8.1. Общие понятия
- •8.2. Проверка гипотезы о законе распределения
- •8.3. Проверка гипотезы о связи на основе критерия x2 (хи-квадрат)
- •8.4. Проверка гипотезы о средних величинах
- •8.5. Основы дисперсионного анализа
- •8.6. Некоторые непараметрические критерии
- •Рекомендуемая литература
- •9 Глава. Корреляционно-регрессионный анализ и моделирование статистических связей
- •9.1. Понятие о статистической и корреляционной связи
- •9.2. Условия применения и ограничения корреляционно-регрессионного метода
- •9.3. Задачи корреляционно-регрессионного анализа и моделирования
- •3. Задана прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.
- •9.4. Вычисление и интерпретация параметров парной линейной регрессии
- •9.5. Статистическая оценка надежности параметров парной регрессии и корреляции
- •9.6. Применение линейного уравнения парной регрессии
- •9.7. Вычисление параметров парной линейной регрессии на основе аналитической группировки
- •9.8. Параболическая корреляция
- •9.9. Гиперболическая корреляция
- •9.10. Множественное уравнение регрессии
- •9.11. Меры тесноты связей в многофакторной системе
- •9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе
- •Рекомендуемая литература
- •10 Глава. Системы регрессионных уравнений
- •10.1. Понятие о системах регрессионных уравнений
- •10.2. Проблемы решения систем взаимосвязанных уравнений
- •10.4. Косвенный метод наименьших квадратов
- •10.5. Двойной метод наименьших квадратов
- •Рекомендуемая литература
- •11 Глава. Статистический анализ неколичественных переменных
- •11.1. Зависимость методов измерений связей от уровня измерения переменных
- •11.2. Измерение связи между двумя дихотомическими переменными
- •11.5. Другие меры связей между номинальными переменными
- •11.6. Коэффициенты корреляции рангов
- •Рекомендуемая литература
- •12 Глава. Статистическое изучение динамики
- •12.1. Виды динамических рядов. Сопоставимость данных в изучении динамики
- •12.2. Элементы динамики: основная тенденция и колебания
- •12.3. Показатели, характеризующие тенденцию динамики
- •12.4. Особенности показателей динамики для рядов, состоящих из относительных уровней
- •12.5. Средние показатели тенденции динамики
- •12.6. Методы выявления типа тенденции динамики
- •12.7. Методика измерения параметров тренда
- •12.8. Методика изучения и показатели колеблемости
- •12.9. Измерение устойчивости в динамике
- •12.10. Сезонные колебания и полное разложение дисперсии уровней динамического ряда
- •12.11. Прогнозирование на основе тренда и колеблемости
- •12.12. Корреляция рядов динамики
- •Рекомендуемая литература
- •13 Глава. Индексы
- •13.1. Понятие индекса
- •13.2. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
- •13.3. Агрегатные индексы. Система индексов
- •13.4. Свойства индексов
- •13.5. Индексный анализ взвешенной средней. Индекс структуры
- •13.6. Построение индексов при обобщении данных по единицам совокупности и по элементам
- •13.7. Границы и условия применения индексного метода
- •13.8. Комплексное использование индексного и регрессионного методов анализа
- •13.9. Примеры использования индексов в экономико-статистических расчетах
- •Рекомендуемая литература
- •14 Глава. Статистическое изучение структуры совокупности и ее изменений
- •14.1. Показатели простой (одномерной) структуры
- •14.2. Показатели иерархической (древовидной) структуры
- •14.3. Показатели балансовой структуры
- •14.4. Показатели многомерной структуры с пересекающимися признаками
- •14.6. Показатели концентрации, специализации, монополизации. Многомерная структура
- •14.7. Абсолютные и относительные показатели изменения структуры
- •14,8. Ранговые показатели изменения структуры
- •Рекомендуемая литература
- •Приложения
- •1. Статистико-математические таблицы
- •2. Основные принципы официальной статистики в регионе Европейской экономической комиссии
4.2. Основные виды графиков
Статистические таблицы дополняются графиками в том случае, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графики являются самой эффективной формой представления данных с точки зрения восприятия. Часто графики используются и вне связи с таблицей. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.
Статистические графики представляют собой условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем.
Графический способ облегчает рассмотрение статистических данных. На графике сразу видны пределы изменения показателя, сравнительная скорость изменения разных показателей, их колеблемость. Вместе с тем график имеет определенные ограничения: прежде всего не может включить столько данных, сколько может войти в таблицу; кроме того, на нем показываются всегда округленные данные — не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний минус — трудоемкость построения. Но этот недостаток может быть преодолен применением пакетов прикладных программ (ППП) для компьютерной графики, например ППП «Harvard graphics».
По способу построения графики делятся на диаграммы, картограммы и картодиаграммы.
Наиболее распространенными являются диаграммы. Они бывают разных видов: линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграммы зависит от вида представляемых данных (одна переменная или один показатель, несколько переменных или показателей, количественные или неколичественные) и задачи построения графика.
106
Рис.
4.1. Динамика выбросов вредных веществ
в атмосферу
и индекса физического объема промышленного производства
в Санкт-Петербурге
В любом случае график обязательно сопровождается заголовком — над или под полем графика. В заголовке указывается, какой показатель изображен, в каких единицах измерения, по какой территории и за какое время он определен.
Линейные графики используются для представления количественных переменных: характеристики вариации их значений, динамики, взаимосвязи между переменными.
Вариация данных анализируется с помощью полигона распределения, кумуляты (кривой «не меньше, чем») и огивы (кривой «больше, чем»). Линейные графики используются в решении задач классификации данных. Линейные графики применяются в анализе динамики связей. В анализе используются точечные диаграммы (так называемое поле корреляции).
Линейные графики целесообразно разделять на используемые для представления данных по одной переменной — одномерные или по двум переменным — двумерные. Примером первого является полигон распределения, второго —• линия регрессии. Возможен такой случай, когда на графике пред-
107
ставлено несколько переменных (показателей), а он все-таки не является многомерным (рис. 4.1).
Для того чтобы динамика двух и более показателей была сопоставимой, следует обеспечить их «единый старт», как на рис. 4.1, где показатели 1990 г. приняты за 100%.
1998 1999 2000 Год
ттштттт — ИНДвКС уЗврвННОСТИ ПОТрвбИТвЛЯ;
—о--------оценка произошедших изменений экономической ситуации в России;
—о— - оценка ожидаемых изменений экономической ситуации в России;
—л-— - оценка произошедших изменений личного материального положения;
—*—¦ -оценка ожидаемых изменений личного материального положения;
- - ¦ - - - оценка благоприятности условий для крупных покупок
Рис. 4.2. Индекс уверенности потребителя (I кв. — февраль, II кв. — май, III кв. — август, IV кв. — ноябрь)
HIS
Динамика двух показателей на одном и том же графике может быть представлена и без приведения их к 100%, если эти показатели связаны каким-либо функциональным соотношением (например, представлена динамика общего показателя и показателя, который является одним из его составляющих). Примером такого графика является рис. 4.2.
При графическом изображении динамики по оси абсцисс показывается время (годы, кварталы, месяцы); по оси ординат — значения показателей или показателя (рис. 4.3, а). При этом ось ординат должна иметь начало в точке «О». Иногда вместо нулевой точки в качестве начального уровня на оси ординат показывается уровень какого-либо года. Это делается втом случае, если изменения изображаемого показателя значительны — в 8—10 раз и более в течение рассматриваемого отрезка времени. Однако такой прием не рекомендуется. Правильнее указать нулевую точку, а затем (если нужно) «разорвать» ось ординат так, как это показано на рис. 4.3, б.
Иногда при больших изменениях показателя прибегают к логарифмической шкале. Предположим, значения показателя изменяются от 1 до 100 (в 100 раз); это может вызвать затруднения при построении графика. Если перейти к логарифмам, то их значения для минимальных (максимальных) значений показателя будут различаться не так сильно: log 1 = 0, log 100 = 2.
Среди плоскостных диаграмм по частоте использования выделяются столбиковые диаграммы, на которых показатель представляется в виде столбика, высота которого соответствует значению показателя. Пример столбиковой диаграммы представлен на рис. 4.4. Часто на столбиковой диаграмме показываются относительные величины: при сравнении показателей по группам, по разным совокупностям, одна из которых может быть принята за 100%.
Пропорциональность площади той или иной геометрической фигуры величине показателя лежит в основе других видов плоскостных диаграмм: треугольных, квадратных, прямоугольных. В треугольной диаграмме нужно так выбрать стороны и высоту треугольника, чтобы его площадь отвечала величине показателя. Для построения квадратной диаграммы нужно задать размер одной стороны, прямоугольной — двух
109
сторон.
Можно использовать и сравнение площадей
круга; в этом случае задается радиус
окружности.
Ленточная диаграмма представляет показатели в виде горизонтально вытянутых прямоугольников. Как столбиковые, так и ленточные диаграммы можно применять не только для сравнения самих величин, но и для сравнения их частей (рис. 4.5 и 4.6).
Особый тип ленточных диаграмм применяется для представления данных с разным характером изменений: положительным и отрицательным (рис. 4.7).
Диаграмма, изображенная на рис. 4.7, может использоваться, например, для представления регионов с разной величиной и характером миграционного сальдо (положительным и отрицательным) предприятий, на которых повысилась и понизилась оплата труда и т.д.
Из плоскостных диаграмм часто используется секторная диаграмма. Она применяется для иллюстрации структуры изучаемой совокупности. Вся совокупность принимается за
го показателя. Площадь фигуры соответствует величине показателя (рис. 4.10).
Если, например, вы решите использовать фигурную диаграмму для изображения структуры безработных женщин, среди которых 47% — молодые женщины (20—24 года) и девушки 16—19 лет, не имеющие стажа работы; 28% — инженерно-технические работники и служащие со специальным образованием в возрасте 25—49 лет и 15% — работницы квалифицированного и неквалифицированного труда в возрасте 50 лет и старше, то должны изобразить три женские фигуры, причем первая из них должна быть в два раза больше второй, а вторая — почти в два раза больше третьей.
При построении графика одинаково важно все — правильный выбор вида графического изображения пропорций, соблюдение правил оформления. Подробнее все эти вопросы освещаются в литературе, рекомендованной к данной главе.
Разнообразные виды графиков позволяют получить ППП для ПЭВМ «Harvardgraphics», «Supercalc», «Statictica», «Stat-graphics» и др. На графическом представлении основаны некоторые процедуры классификации (группировки) данных, анализа динамики: выявление тенденции, сравнение динамики разных показателей и т.д.
114
Наконец, сам процесс обобщения статистических данных можно представить графически (рис. 4.11). Изображен весь массив собранных данных, т.е. таблица «объект-признак», полученная за ряд периодов. Например, собраны данные по промышленным предприятиям на данной территории по многим характеристикам за каждый месяц. Это можно представить в виде параллелепипеда, что и сделано на рис. 4.11.
Третье измерение может быть не временем, а определенной территорией, т.е. каждая таблица «объект-признак» относится к определенной территории (району, области и т.д.). На последующих рисунках показано, что каждый из подмас-сивов, взятых из рис. 4.12, а, может выделяться и разрабатываться самостоятельно (б); на рис. 4.12, ваг показано, что данные могут подразделяться по регионам, по кварталам и, наконец, по категориям (д). Последний рис. 4.12, е изображает подразделение данных по трем основаниям: по времени, территории и категориям.