Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
investicii.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
5 Mб
Скачать

5.2 Доходность к погашению

 

Существует много видов процентных ставок, а не только та, о которой шла речь выше. Более того, существует много способов подсчета процентных ставок. Один из способов подсчитывает процентную ставку, которую называют «доходность к погашению». Еще один известный способ, который будет обсуждаться в следующем параграфе, подсчитывает спот-ставку (spot rate).

Для описания доходностей к погашению и спот-ставок будут использованы три гипотетические казначейские ценные бумаги, которые доступны каждому инвестору. Считается, что подобные ценные бумаги не подвержены риску в том смысле, что инвесторы гарантированно получают обещанные по этим ценным бумагам суммы в указанные сроки. Таким образом, риск невыполнения обязательств по этим бумагам отсутствует и не влияет на расчет процентных ставок.

Рассматриваемые ценные бумаги будем называть облигациями А, В, С. Облигация А погашается через год, при этом инвестор получает $1000. Облигация В – через два года, при этом инвестор получает тоже $1000. Облигация С является купонной облигацией, по которой инвестор получает $50 через год и еще $1050 через два года. Цены, по которым эти облигации продаются в настоящее время на рынке, таковы:

 

облигация А (бескупонная облигация со сроком погашения 1 год) – $934,58;

облигация В (бескупонная облигация со сроком погашения 2 года) – $857,34;

облигация С (купонная облигация со сроком погашения 2 года) – $946,93.

 

Доходность к погашению (yield to maturity, YTM) по любой ценной бумаге с фиксированным доходом представляет собой единую ставку сложных процентов, начисляемую в банке, которая позволяет инвестору получить все выплаты, полагающиеся по рассматриваемой ценной бумаге, если бы деньги инвестировались не в ценные бумаги, а в банковский депозит. Очень просто определяется доходность к погашению ценной бумаги со сроком погашения 1 год – облигации А. Так как инвестирование $934,58 в данный момент обернется получением $1000 год спустя, то доходность к погашению по этой облигации есть ставка rA, которую должен назначить банк, чтобы на депозите с $934,58 через год стало $1000. Таким образом, доходность к погашению по облигации А – это ставка rA, удовлетворяющая следующему уравнению:

 

(1+ rA)х$934,58=$1000, (5.4)

 

что дает доходность 7%.

Предположив годовую процентную ставку облигации В равной rB, получим, что счет с первоначальным депозитом $857,34 вырастет до (1 + rB)х$857,34 через год. Если оставить эту величину неизменной, то сумма на счете вырастет до (1+ rB) х [(1+ rB) х х $857,34] к концу второго года. Другими словами, доходность к погашению по облигации В - это ставка rB, удовлетворяющая следующему уравнению:

 

(1 + rB) х [(1 + rB) х $857,34]= $1000, (5.5)

 

что дает доходность 8%.

В случае облигации С предположим, что на банковский счет внесено $946,93. В конце первого года вклад вырастет до (1 + rC) х $946,93. После этого инвестор снимает $50, оставляя на счете (1 + rC) х $946,93 - $50. К концу второго года на счете будет сумма, равная (1 + rC) х ((1 + rC) х $946,93 - $50]. Доходность к погашению по облигации С – это ставка rC, при которой указанная сумма равна $1050:

 

(1 + rC) x [(1 + rC ) х $946,93 - $50] =$1050, (5.6)

 

что дает доходность 7,975%.

Другими словами, доходность к погашению – это процентная ставка в коэффициенте дисконтирования, которая приравнивает сумму обещанного денежного потока к текущей рыночной цене облигации1. Рассматриваемая таким образом доходность к погашению аналогична внутренней ставке рефинансирования (internal rate of return) – понятию, используемому при принятии бюджетных решений, которое часто описывается во вводных финансовых учебниках. Для облигации А это можно продемонстрировать, разделив обе части уравнения (5.4) на (1 + rA):

 

 

Аналогично, для облигации В обе части уравнения (5.5) могут быть разделены на (1 + rB)2

 

 

а для облигации С обе части уравнения (5.6) разделим на (1 + rC)2:

 

 

или

 

 

Так как уравнения (5.7), (5.8) и (5.9) эквивалентны уравнениям (5.4), (5.5) и (5.6) соответственно, то и решения этих уравнений одинаковые: rA = 7%, rB =8% и rC = 7,975% соответственно.

Для купонных облигаций доходность к погашению определяется итерационным способом. В рассмотренном примере для облигации С первоначально можно использовать ставку в коэффициенте дисконтирования 10%, тогда правая часть уравнения (5.9) будет равна $913,22, что слишком мало. Значит число в знаменателе слишком велико и можно подставить, например, 6%. В этом случае окажется, что правая часть велика. Далее берем число между 6 и 10%. Продолжая таким образом, получим искомую ставку с любой заданной точностью.

К счастью, компьютеры прекрасно справляются с этой задачей. Компьютеру задается сложная серия денежных потоков, и он быстро определяет величину доходности к погашению. Во многие финансовые калькуляторы встроены аналогичные программы. Пользователь просто задает калькулятору число дней до погашения, годичные купонные выплаты и текущую рыночную цену, а затем нажимает кнопку и получает доходность к погашению.

Доходность к погашению – наиболее распространенный способ измерения процентной ставки по облигации или ее доходности. Эта ставка может быть рассчитана для любой облигации, что облегчает сравнение различных инвестиций. Однако здесь имеются некоторые проблемы. Чтобы объяснить эти проблемы, необходимо рассмотреть концепцию спот-ставок.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]